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Abstract

The Global Positioning System (GPS) provides world-wide availability to high-

accuracy navigation and positioning information. However, the threats to GPS are

increasing, and many limitations of GPS are being encountered. Simultaneously,

systems previously considered as viable backups or supplements to GPS are being

shut down. This creates the need for system alternatives.

Navigation using signals of opportunity (SoOP) exploits any signal that is avail-

able in a given area, regardless of whether or not the original intent of the signal was

for navigation. Common techniques to compute a position estimate using SoOP in-

clude received signal strength, angle of arrival, time of arrival, and time difference

of arrival (TDOA). To estimate the position of a SoOP receiver, existing TDOA al-

gorithms require one reference receiver and multiple transmitters, all with precisely

known positions.

This thesis considers modifications to an existing algorithm to produce a compa-

rable position estimate without requiring precise a priori knowledge of the transmitters

or reference receiver(s). Using Amplitude Modulation (AM) SoOP, the effect of erro-

neous a priori data on the existing algorithm are investigated. A proof-of-concept for

three new estimation algorithms is presented in this research. Two of the estimators

successfully demonstrate comparable performance to the existing algorithm. This is

demonstrated in six different transmitter environments using four different receiver

configurations.
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NAVIGATION WITH

LIMITED PRIOR INFORMATION USING

TIME DIFFERENCE OF ARRIVAL MEASUREMENTS

FROM SIGNALS OF OPPORTUNITY

I. Introduction

This chapter provides the necessary basis and motivation for researching navi-

gation using time difference of arrival (TDOA) measurements from signals of

opportunity (SoOP). The chapter begins with a background discussion, followed by a

description of the research goals and assumptions made in order to limit the scope of

this research. A review of related research and a justification are briefly presented, and

the chapter is concluded with an organizational outline for the remaining chapters.

1.1 Background

Precision navigation and positioning is no longer a luxury, but rather a require-

ment for modern systems. United States Air Force doctrine declares navigation and

positioning “vital to Air Force operations” [6]. The more precise and reliable navi-

gation and positioning data become, the more such a system enables its users. The

Global Positioning System (GPS) is capable of delivering world-wide, sub-meter ac-

curacy and has therefore been the driving factor behind the increased demand for

such accuracy. However, there are conditions where GPS is unreliable or unavailable,

such as urban environments, inside buildings, and within areas of intentional or unin-

tentional jamming. Therefore, the need has greatly increased for a viable navigation

and positioning technique other than GPS with precision on a similar order.

GPS is among many systems that utilize an approach called radiolocation. Radi-

olocation is most commonly defined as a navigation and positioning technique used to

locate a transmitter by measuring parameters of a received signal that subsequently
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is used to derive a position estimate [4]. There is some ambiguity on the specific

meaning of the terms radiolocation, radionavigation, and radiodetermination. For

this thesis, the term radiolocation will be considered generally to mean “the determi-

nation of the position, velocity and/or other characteristics of any object [transmitter

or receiver]...by means of the propogation properties of radio waves,” as defined by

United States Federal Standard 1037C [31]. The general concept of radiolocation

was first documented in 1891 [43]. In the 1920s and into the World War II era, the

Long Range Aid to Navigation (LORAN) was introduced [32]. LORAN was among

the first major systems to employ radiolocation, and since then, the technique has

been extended to the NAVSTAR-GPS satellite navigation system (later the name

was shortened to “GPS”) [32]. As the world-wide availability and precision of GPS

increased, many other applications found use for the GPS signals, such as commerce,

telecommunications, and agriculture [33]. As a result, the value of GPS as a potential

target for hostile forces or individuals has greatly increased.

GPS user equipment is vulnerable to both intentional and unintentional inter-

ference, resulting in possible denial of service over large geographical areas. Many

fielded systems have not been tested in extreme outages, and the synergistic effects

of such an outage are largely unknown [14,40]. GPS jamming equipment is relatively

simple, and given the characteristics of the GPS signal, a low-power jammer can re-

sult in an intentional GPS denial of service [20]. GPS outages may also result from

unintentional friendly sources. For example, on 22 January 2007, an operator error

denied GPS from approximately 1200 - 1600 PST, affecting medical paging, cell phone

towers, and United States Coast Guard operations around San Diego, California [3].

Naturally occurring conditions pose a dynamic threat to GPS as well. The impact of

charged-particle radiation from a solar storm, for example, is unknown and untested,

and the next solar maximum is forecast for 2012 [22].

As the threats to GPS and the corresponding synergistic impacts grow, legacy

systems are being reduced or eliminated. The reasoning is both technological and

political. In recent years, LORAN was commonly viewed as a “backup” system to

2



GPS. While international communities explored LORAN-C (a variant of LORAN), as

a risk mitigation for GPS vulnerabilities, the United States has begun the incremental

shut down of LORAN, viewing it as redundant and costly compared to the increasing

capabilities of GPS [2]. As non-GPS navigation systems continue to be targeted for

shut down and no replacement or new systems are scheduled for operation, the fre-

quency spectrum remains full of signals which can be received and used for navigation

— regardless if that is the intent of the signal.

SoOP are signals transmitted for non-navigation purposes that are freely avail-

able in most environments and may be exploited for navigation. SoOP are convenient

for navigation, because they are often more numerous and include, but are not limited

to [17, 44]:

• Amplitude modulation (AM) and frequency modulation (FM) radio stations

• Analog/digital television

• Wireless local area network (WLAN) signals such as WiFi and WiMax

• Digital Audio Broadcasts (DAB) and Digital Video Broadcasts (DVB)

• Cellular and mobile phone network base stations

• Radar sites

• Radio Frequency (RF) beacons/transponders

• Partially available GPS

• Communications satellite signals

• Celestial and other signals from nature.

Navigation via SoOP makes use of the available frequency spectrum in a given

environment (and the supporting infrastructure). One such method of navigation via

SoOP is using TDOA measurements. Current algorithms require at least a pair of

receivers to receive the same SoOP. The position of one receiver must be known a

priori. From multiple TDOA measurements between the receivers, a series of ranges

3



from the receiver to the transmitter are estimated and from that a position estimate

is computed. This research will concentrate on using TDOA measurement techniques

on received SoOP, specifically those from AM transmissions.

1.2 Research Goals

Precise a priori information regarding the position of transmitters and at least

one reference receiver in an environment where GPS is unavailable may not be ac-

cessible. Therefore, the primary goal of this research is to prove the concept that

a revised TDOA algorithm using SoOP is sufficient for navigation with transmitter

and reference receiver position information either unreliable or unavailable. This is

demonstrated by the simulation of such a system using broadcast AM signals. The

secondary goal of this research is to examine the effect of erroneous prior information

on the existing estimation algorithm.

1.3 Assumptions

For this research, the following assumptions were made about the SoOP and

the receiver capability:

1. SoOP have an established infrastructure in and around a potential Area of

Responsibility (AOR).

2. SoOP transmitters broadcast AM signals in the band of 530 to 1700 kHz.

3. SoOP broadcast precisely on the expected broadcast carrier frequency.

4. SoOP transmitters do not interfere with each other.

5. There is no multipath present.

6. All receivers have a real-time, noiseless sync for TDOA estimation.

7. All receivers and transmitters are static.

To successfully navigate in a GPS-denied environment using SoOP, assumptions

were made for both the signals and the corresponding impact on constructing a re-

4



ceiver. The SoOP must be readily accessible and supported with a pre-established

infrastructure. It is assumed that a receiver can be built to receive the SoOP. For

this research, the signals of interest are in the commercial AM band as defined by

the Federal Communications Commission (FCC) in the United States [9]. The re-

maining assumptions were made to limit the scope of this thesis to a proof-of-concept

regarding the a priori information about the transmitters and receivers.

1.4 Related Research

This section discusses radiolocation systems that can exploit SoOP and outlines

recent research that has been presented by the community. These systems are pre-

sented in terms of two categories: non-TDOA and TDOA-based. The section begins

with non-TDOA-based systems followed by TDOA-based systems including examples

of fielded TDOA systems. The section concludes with a summary of recent research

regarding radiolocation via SoOP utilizing TDOA measurements.

1.4.1 Non-TDOA-based Navigation Systems. Generally, four techniques

comprise non-TDOA-based navigation systems: Received Signal Strength (RSS), An-

gle of Arrival (AOA), Time of Arrival (TOA), and Frequency Difference of Arrival

(FDOA).

1.4.1.1 Received Signal Strength. Radiolocation using RSS measure-

ments is a common method for obtaining a navigation solution. RSS uses a known

mathematical model describing the path loss with distance. The collected measure-

ments are combined with the model of the channel to compute the navigation solution.

While the approach is simple to implement, it relies on assumptions about the local

physical topography and is susceptible to multipath fading and shadowing [4, 28].

1.4.1.2 Angle of Arrival. AOA has been a prevalent technique for

computing navigation solutions in coastal regions, though the technique is not lim-

ited to this environment. To compute a navigation solution, special antennae arrays,
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called interferometers, receive signals from a transmitter. From the received signals,

the azimuth (i.e., AOA) is computed by calculating a line of bearing (LOB) from

the transmitter. The position estimate is calculated at the intersection of two lines

(assuming they intersect) or using triangulation when more transmitters are in the

network. The position estimate is computed with higher accuracy when using two or

more sources as shown in Figure 1. This technique is passive, and no time synchro-

nization between receivers is required. However, the hardware to implement AOA

can be large and complex [25]. Furthermore, AOA is dependent on line of sight to

the transmitter, and there is a strong correlation between the accuracy of the solution

and the distance between the receivers and transmitters [4, 7, 28].

2 Source Estimate

3 Source Estimate

Tx
1

Tx
3

Tx
2

Figure 1: Radiolocation via AOA

1.4.1.3 Time of Arrival. TOA exploits the propagation time between

the transmitter and the receiver to compute a navigation solution. The one-way

propagation time between the transmitter and each receiver is computed. This time

measurement is converted into a range distance between a transmitter and receiver

assuming the signal travels at the speed of light. Geometrically, the receiver must lie

on a circle centered at the transmitter. By using at least three receivers as shown in
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Figure 2, the position of the receiver is given by the intersection of the three circles [4].

GPS is an example of a system that implements TOA. This type of system is highly

dependent on clock synchronization between the receiver and transmitter [7, 28, 42].

Tx
1

Tx
2

Tx
3t

1

t
3

t
2

Figure 2: Radiolocation via TOA

1.4.1.4 Frequency Difference of Arrival. If there is movement between

the receiver and transmitter, a frequency shift relative to the expected transmitted

frequency will exist. This difference can be exploited to compute a position estimate.

The receivers must have the ability to measure frequency with more accuracy than

the smallest possible shift in order for the system to detect movement. FDOA can be

difficult to implement and is often costly [30, 38].

1.4.2 TDOA-based Navigation Systems. TDOA-based systems focus on

measuring the difference in arrival times of two transmitted signals by a single receiver,

or by differencing the arrival time of a single signal at two or more receivers [42]. For

this research, the former system is referred to as source localization, and the latter

system, which was implemented in this research, is referred to as navigation. TDOA

positioning may also be referred to as “hyperbolic” or “multi-lateration” positioning.

To illustrate this technique, a two receiver scenario is described. One receiver has an
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unknown position and is referred to as the “mobile receiver,” while the position of

the other is known a priori and is referred to as the “reference receiver.” These two

receivers share a data link from which the difference in arrival times of a signal are

computed. Since only the difference in arrival times is computed, clock synchroniza-

tion is not required (unlike TOA). From the TDOA measurement, a range estimate

between the mobile receiver and the transmitter is computed. Using signals from at

least three different transmitters allows for a two-dimensional position estimate to be

computed as shown in Figure 3. Two examples of fielded systems that employ TDOA

that will be discussed here are LORAN and NAVSYS Corporations GPS Jammer and

Interference Location System.
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Figure 3: Radiolocation via TDOA Using Three Transmitters and Two Receivers

1.4.2.1 LORAN. LORAN operates in the Low Frequency band at

90 to 110 kHz and was developed for aircraft and maritime navigation near coastal

areas. The system consists of multiple transmitters that are synchronized in time.

An aircraft or ship measures the TDOA of the signals from different transmitters.

Each TDOA measurement defines a hyperbolic line of position (LOP). The LOP

intersection produces a navigation solution [29, 42].
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1.4.2.2 GPS Jammer and Interference Location System. NAVSYS

corporation designed a system to mitigate GPS jamming and interference. The system

uses multiple terrestrial receivers at known locations to determine the location of a

single transmission source (i.e., the GPS jamming device). This allows for the GPS

interference to be mitigated or avoided. [7, 28, 42].

1.4.3 Previous TDOA SoOP Radiolocation. There has been recent research

that utilized TDOA as the technique to navigate using various SoOP (or combinations

of signals). The simulations presented in this thesis focused specifically on the TDOA

algorithm as executed using AM signals. However, the principles from prior research

that employed a TDOA technique using any SoOP are considered relevant and are

discussed here.

Hall designed, built, and evaluated an AM SoOP radiolocation system [16]. He

determined relative positions between the reference and mobile receiver (referred to

as baselines) from observations of the carrier phases of various signals from broadcast

AM stations near Boston, Massachusetts. His system determined the horizontal com-

ponents of the baseline to approximately ten-meter uncertainties for baseline lengths

up to about 35 kilometers. Hall’s system did all computations post data capture, and

therefore, did not navigate real-time. He also designed and implemented a method

that enabled the ambiguity of the carrier-phase to be resolved instantaneously with-

out position initialization or signal-tracking continuity. Hall also documented im-

pediments to AM SoOP radiolocation. Specifically, he showed how AM transmitter

uncertainty causes uncertainty in the receiver position. His sub-meter geodetic sur-

veys of 29 Boston area transmitters showed some position errors exceeding 100 meters.

However, when the inherent risks of the AM signals and errors of a priori data can be

accounted for, AM remains a viable signal for radiolocation. He further showed the

strengths of AM as a SoOP for radiolocation by demonstrating its robustness to en-

vironmental conditions, such as wooded areas, that GPS was much more susceptible
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to. Hall’s findings provided validation that AM signals are a suitable SoOP to use in

the proof-of-concept simulations conducted in this research.

Fisher introduced the concept of navigation potential (NP) and detailed the

process to determine the NP of a signal as compared to GPS [10]. This concept allows

the usefulness of a signal for navigation to be quantified. He also provided a theoretical

performance limit of the navigation parameters of received signals. Furthermore, by

modeling multipath errors, he demonstrated a more realistic predictor of a given

system performance as compared to a metric based on the transmitted signal in

measurement noise alone.

Eggert explored the NP of the National Television Systems Committee (NTSC)

broadcast signals using a TDOA algorithm in both high and low multipath environ-

ments. He developed three data reduction algorithms to estimate the TDOA. One

algorithm modified the classical cross-correlation approach, and the other two differ-

enced the TOA of the signal at each receiver. The linear fit peak estimator allowed

for more precise determination of the acutal cross-correlation peak in the TDOA es-

timation. His results also showed multipath to be the dominant source of errors,

which he mitigated using a locally fabricated antenna. His collected NTSC broadcast

signals showed TDOA errors ranging from 1 to 200 meters with typical errors be-

tween 10 to 40 meters. His subsequent simulations using eight television stations near

Dayton, Ohio produced typical range errors of approximately 40 meters. Accuracy

was reduced to 100 meters in high multipath environments. Finally, he demonstrated

that TDOA measurement accuracy of 5 to 10 meters was required to provide position

estimates with 10 meter accuracy to mirror readily available single frequency GPS

receivers [7]. The NTSC signals are of a much higher bandwidth than the AM signals

explored in this research, but Eggert’s results provide a useful baseline for the validity

of the simulation data presented here.

Kim analyzed the NP of AM and FM radio signals for the purposes of navigation

in large urban areas where GPS is typically degraded or unavailable. He explored two
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correlation algorithms to measure the TDOA at the receiver. He further detailed

the correlation characteristics of both AM and FM signals depending on the type of

message signal being modulated (song or voice). His system model was validated by

using a reference signal with known characteristics (a 31-Gold coded waveform) and

then analyzing AM and FM signals from various sources. His simulations used eight

different combinations of his two correlation methods, modulation types, and message

signals. His work showed two of the combinations using FM were the most promising

for navigation purposes. The AM signals he examined yielded limited potential using

either of his two correlation methods [23]. For the purposes of this research, the

correlation methods and characteristics of the AM signals Kim analyzed that produced

the limited NP are noted as inherents risks of using AM SoOP. Specifically, there was

no significant difference in the correlation characteristics of AM voice or AM song

when compared to each other.

McEllroy showed promising results for using AM signals for navigation. He eval-

uated four methods for estimating the cross-correlation peak within a sampled portion

of the cross-correlation data for use in TDOA estimation. His system implemented

a peak estimator based on Eggert’s linear fit peak estimator. The simulations he

created attempted to model real-world AM signal characteristics, including the trans-

mitter source, receivers, propogation effects, inter-receiver frequency errors, noise, and

multipath. He tested a hardware system using the simulated techniques and found

that selecting a proper analog front-end is crucial to the successful operation of the

navigation system. Furthermore, he also documented several real-world error sources

including potential errors in the position of the AM transmitters from the FCC, power

line noise, and instability of local oscillators between receivers. In his simulations at

signal-to-noise ratio (SNR) levels of 60 dB, with no multipath, no frequency errors,

and no integer ambiguity (i.e., ideal conditions), he was able to demonstrate sub-

meter accuracy. As SNR decreased, the variation in position estimates increased [28].

Like Eggert and Hall, McEllroy further confirms multipath as the most significant

source of errors for AM TDOA navigation.
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Velotta examined using Orthogonal Frequency Division Multiplexing (OFDM)

signals for navigation. His approach exploited feature detection using characteristics

of OFDM signals instead of a correlation technique [42]. Similar signal features like

those of OFDM signals are not present in AM signals and served as the justification

to pursue a simple cross-correlation technique for this research.

Montminy explored the geolocation of a hostile transmitter using TDOA mea-

surements of low-power RF signals. She employed a weighted least squares solution

to estimate the transmitter’s location, and by analyzing the variance of the estimate,

was able to determine whether or not the received signal was line-of-sight (LOS) [30].

This technique is useful for multipath mitigation and works within the estimation al-

gorithm. This research did not model multipath; however, given that it is a significant

source of potential error, the technique is noted for future work in this area.

1.5 Justification

Wireless communications continue to improve and an increasing number of

SoOP are avaliable for exploitation. As the GPS limitations and threats continue

to be an issue for users, the desire to supplement or replace GPS in certain appli-

cations is ever present. While higher bandwidth signals are more likely to provide

higher precision, the supporting equipment comes at a cost of user convenience —

equipment size or computation time, for example. AM SoOP could potentially be

integrated into fielded navigation systems. The existing worldwide infrastructure of

broadcast AM signals makes these transmissions ideal for widespread implementation.

Furthermore, the techniques demonstrated with AM signals can also be applied to

higher bandwidth signals for additional precision. This research seeks to prove the

concept that these advantages can be exploited while also limiting the amount of a

priori data currently required to make such a system useful.
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1.6 Organization

Chapter II discusses the necessary background information for broadcast AM

signals and the TDOA algorithms. Chapter III explains the methodology used for

data collection in the simulation environment and the TDOA, correlation and position

estimation algorithms including the derivation of new algorithms presented in this

research. Chapter IV details the results from the simulations described in Chapter III.

Chapter V gives an overall summary and conclusions of the thesis followed by potential

future work and follow-on areas of study.
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II. Technical Background

This chapter provides the technical background for the topics involved in this

research. First, an overview of the characteristics of broadcast AM signals

is provided. Next, current TDOA positioning techniques are derived followed by a

discussion of signal evaluation and correlation theory. Last, the error statistics used

in this research are discussed, specifically the Cramér-Rao Lower Bound (CRLB) for

the range and position estimation techniques, the generalized variance, and the mean

square error (MSE).

2.1 Broadcast AM Characteristics

Since AM signals are the SoOP used in this research, a discussion of the signal

characteristics is useful. For broadcast AM, the message signal is modulated and

transmitted. A basic amplitude modulated signal is of the form

s(t) = Ac m(t) cos(2πfct), (1)

where

s(t) is the amplitude modulated signal that is transmitted,

Ac is the amplitude of the carrier frequency,

m(t) is the message signal that is being modulated,

fc is the carrier frequency.

In the United States, the AM band spans 530 kHz to 1700 kHz with corre-

sponding wavelengths from 566 meters to 175 meters [9]. The carrier frequencies in

the band are spaced 10 kHz apart, and the carrier frequencies are required to be

maintained within ±2 Hz. Unlike other bands, there is no guard band, meaning there

is no additional bandwidth reserved between the channels for interference protection.

For the broadcast signals, the message content is either voice or music in the 50 Hz to

16 kHz range. The broadcasts can only be transmitted one channel at a time; there-

fore, stereo effects cannot be achieved [10]. AM broadcast signals travel primarily
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as groundwaves (especially in daytime hours) which propagate with phase velocities

that depend on the electrical properties of the ground. When AM signals travel as

groundwaves, they are susceptible to overhead and underground conductors such as

power lines. Conversely at nighttime, when the D-layer of the ionosphere recombines,

AM signals reflect off the ionosphere which enables skywave propagation. This phe-

nomenon could potentially lead to interference of distant stations at night [16]. As a

result of these transmission characteristics, the FCC categorizes each channel which,

in turn, dictates the allowable parameters of each station’s transmission.

Broadcast AM stations are divided into three categories (or channels): Clear,

Regional, and Local channels [5]. Clear channels service a wide area and are free of

interference on the same and adjacent channels. Regional channels service populated

areas and surrounding rural areas. Local channels service a city or town and the

surrounding area. Local channels reduce transmitter power at night so as not to

interfere with other distant stations [10]. For navigation purposes, this results in

fewer potential navigation signals.

Having presented some basic characteristics of the signals, and the associated

risks with using them for navigation, the broadcast AM band is attractive for SoOP

navigation for several reasons:

1. Signals from many AM stations are generally available world-wide and certainly

in most parts of the United States.

2. Compared to GPS, transmitters are nearby, ground-based and stationary.

3. The long wavelengths, relative to GPS wavelengths, of the carrier frequencies

enable the potential for indoor and underwater navigation.

4. The band has a broad frequency range at lower frequencies (relative to other

bands) and low bandwidths that simplify the receiver design.

5. Signals are typically received with a higher SNR than GPS.
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As discussed, GPS signals may be unreliable or denied, especially in many en-

vironments that military applications might encounter. The characteristics of AM

signals may actually allow for better performance compared to other SoOP. For ex-

ample, shorter wavelengths of FM and television broadcast signals do not penetrate

buildings as well as AM signals [16]. To further illustrate this point, the skin depth

of AM signals in freshwater is approximately 10 meters. This enables the ability to

navigate with an antenna slightly below the surface of the water as opposed to slightly

above the surface [16]. Therefore, taking the risks and benefits of broadcast AM into

account, the AM signals become an attractive SoOP for navigation. Furthermore,

the limitations and simple signal characteristics of AM make it an ideal choice for

proof-of-concept demonstrations of the TDOA algorithms.

2.2 TDOA Positioning

TDOA positioning is an extension of the multi-lateration technique, that is,

using distances from known locations to compute a position estimate [29]. The tech-

nique described here consists of multiple transmission sources at known locations and

two receivers as previously discussed — a reference receiver at a known location and a

mobile receiver at an unknown location. The goal is to determine the relative position

between the reference and the mobile receivers and to estimate a range from the mo-

bile receiver to the transmitter. This range estimate defines a hyperbola consisting

of possible locations of the mobile receiver. The shape may be a circle or sphere,

rather than a hyperbola, depending on the system. For the purposes of explanation,

the shape will be discussed as a hyperbola, unless otherwise noted. Given enough

measurements (in an ideal case), the intersection of the hyperbolae will be the final

position estimate.

In the case where hyperbolae intersect, a straightforward approach uses geo-

metric interpretation to calculate the intersection. However, when time measurement

errors are present (for example, in the form of a clock bias between the receivers),

the hyperbolae may not intersect. The theory for position estimation has been thor-
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oughly developed yielding several methods to solve the hyperbolic equations in these

non-ideal conditions [4]. One technique computes an exact solution to the hyperbolic

TDOA equations, however, the constraint may exist such that the number of measure-

ments must be exactly equal to the number of unknown position coordinates [8, 18].

Another option is to use Taylor-series expansion to linearize the equations and solve

for position iteratively [11,39]. Other techniques are based on least squares minimiza-

tion of the location error to solve for a position estimate [1, 13, 19, 36, 37].

To illustrate the TDOA algorithm, the following sections develop the range

estimation and position estimation concepts and techniques. For range estimation,

the case of synchronized receivers is presented first, followed by discussion of the

unsynchronized case. The position estimate is subsequently derived using the output

from the range estimates for both cases (the synchronized case being represented by

a clock bias of zero).

2.2.1 Range Estimation. The two-receiver TDOA system requires that the

transmitters and the reference receiver be at known locations. This case (for a single

transmitter) is shown in Figure 4. Both the mobile and reference receivers time tag

a received signal, and the TDOA is computed through a real-time data link. The

time difference is converted into a distance by multiplying by the speed of the signal,

typically assumed to be the speed of light. Since the range between the reference

receiver and the transmitter is known, and the range between the two receivers is

estimated via TDOA, the computation of a range estimate between the transmitter

and the mobile receiver is made possible. If there are at least three transmitters

available, multi-lateration techniques can be used to estimate the mobile receiver’s

position. If the receivers are synchronized with perfect TDOA estimates, the range

estimates define circles that will intersect exactly as was shown in Figure 3. The

synchronized and unsynchronized cases are overlayed and shown for three transmitters

in Figure 5.
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Removing the assumption that the receivers are synchronized allows for a more

generalized development of the range estimate. In the case where no clock bias exists

or the receivers are synchronized, the error terms are considered to be zero. The

following mathematical development is taken from Eggert [7] and McEllroy [28]. The

local received time of the signal from the kth transmitter at each receiver is defined

by some universal true time:

t̂
(k)
ref = t

(k)
ref + ǫref (2)

t̂
(k)
mob = t

(k)
mob + ǫmob (3)

where

t̂
(k)
ref is the reception time at Rxref of the kth SoOP with respect to its clock,

t̂
(k)
mob is the reception time at Rxmob of the kth SoOP with respect to its clock,

t
(k)
ref and t

(k)
mob are the true reception times of the kth SoOP at each receiver,

ǫref and ǫmob are the reference and mobile receiver clock biases, respectively.
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The terms in (2) and (3) are combined, and the true times and biases are grouped.

For notational convenience, the superscript is omitted and the TDOA measurement

from the kth transmitter is rewritten as

d̂ = t̂mob − t̂ref

= (tmob + ǫmob) − (tref + ǫref)

=
rmob − rref

c
+ (ǫmob − ǫref)

︸ ︷︷ ︸

δt

(4)

where

d̂ is the measured TDOA,

rmob and rref are the actual ranges between the transmitter and receivers,

δt the clock bias difference (system clock bias) in seconds,

c is the speed of light.
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Therefore, in an ideal channel (no noise, no multipath, etc.), the entire magnitude of

the TDOA error is the system clock bias. This is significant because most applica-

tions may not be able to guarantee clock synchronization, or it may not be known if

the clocks are synchronized. Therefore, the system clock bias becomes an unknown

parameter that must be estimated. Adding another unknown to the system of equa-

tions requires the addition of one more transmitter to the minimum number required

to compute a solution. For example, to estimate the three-dimensional position of a

receiver with system clock bias, a minimum of four transmitters is required.

Separating the TDOA measurement from (4) into terms of known and unknown

parameters, the expression becomes

d̂ =
rmob − rref

c
+ δt

cd̂ = rmob − rref + cδt
︸︷︷︸

b

cd̂ + rref = rmob + b (5)

where

(cd̂ + rref) is a pseudorange measurement from the transmitter to the Rxmob,

rmob is the actual (unknown) range from transmitter to the Rxmob,

b is the (unknown) system clock bias with units of meters.

The ranges from (5) are illustrated in Figure 6.

2.2.2 Position Estimation Algorithm. Continuing with the development

from Eggert [7] and McEllroy [28], the unknown parameters from the right-hand

side of (5) can be determined. The following development closely follows the GPS

positioning calculations by combining (5) and multi-lateration techniques to solve for

the unknown parameters. The range from the kth transmitter to the mobile receiver

is described in terms of Euclidean distance:
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r
(k)
mob =

√

(x(k) − xmob)
2
+ (y(k) − ymob)

2
+ (z(k) − zmob)

2
(6)

where

r
(k)
mob is the true range from the kth transmitter to the mobile receiver,

< x(k), y(k), z(k) > is the known position of the kth transmitter,

< xmob, ymob, zmob > is the unknown position of the mobile receiver.

Adding the bias to (6) yields a pseudorange (as described in (5)) which represents the

measured pseudorange from the TDOA measurement and is given by

ρ
(k)
mob = r

(k)
mob + b (7)

where

ρk
mob is the pseudorange from the kth transmitter to the mobile receiver,

rk
mob is the true range given in (6).
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These equations contain four unknowns, specifically the three coordinates of

the mobile receiver < xmob, ymob, zmob > and the system clock bias b. Provided that a

minimum of four transmitter sources are able to be measured, the simplest approach

is to use the Newton-Raphson method. This is an iterative process based on gradient

descent which has been specifically derived for the source localization problem by

Chan and Ho [19] and for the navigation problem for the two-receiver TDOA system

discussed thus far by Eggert [7] and McEllroy [28]. An initial guess for the position

mobile receiver < x0, y0, z0 > and of the system clock bias b0 are used to linearize

the equations and then, assuming convergence, iterate until the solution produces an

error below a predetermined threshold. Based on the coordinates of the initial guess,

a pseudorange from the kth transmitter to the mobile receiver is

ρ
(k)
0 =

√

(x(k) − x0)
2
+ (y(k) − y0)

2
+ (z(k) − z0)

2
+ b0. (8)

Therefore, the difference between the measured psuedorange (using the expres-

sion in (7)) and the range estimate using the initial guess (using the expression in

(8)) is

∆ρ(k) = ρ
(k)
mob − ρ

(k)
0 . (9)

Rewriting (9) in vector form for a total number of K transmitters gives the

observation vector:

h =











∆ρ(1)

∆ρ(2)

...

∆ρ(K)











(10)

Let x(k) =< x(k), y(k), z(k) > be the vector containing the known coordinates of

the kth transmitter and x0 =< x0, y0, z0 > be the vector containing the coordinates for
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the initial guess. Using a least squares solution, the corrections to the initial estimate

is written as:




∆x̂

∆b̂



 = (GTG)−1GT h (11)

where

G =











(−a(1))T 1

(−a(2))T 1
...

(−a(K))T 1











(12)

a(k) =
x(k) − x0

||x(k) − x0||
(13)

As (11) is solved iteratively, it produces corrections to the initial estimate. The

guess is then refined by adding the correction to the guess and repeating the process:

x̂ = x0 + ∆x̂ (14)

b̂ = b0 + ∆b (15)

Assuming convergence, the iterations continue until the desired threshold for

the magnitude of the output of (11) is met. Once the threshold is met, the values

computed in (14) and (15) become the final estimate for the mobile receiver position

and the system clock bias, respectively.

2.3 Signal Evaluation

Section 2.2.1 reviewed the TDOA algorithm using the difference of the time

of arrival at two receivers. If the receivers are stationary, correlation analysis is

performed. If the receivers are in motion, the complex ambiguity function can be
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used to extract the time difference. This thesis does not examine the case where the

receivers are in motion, however, the reader is referred to Hall [16] and Montminy [30]

for further information. Given that the receivers remain stationary for this research,

the following section describes how the TDOA can be determined by correlation of the

two received signals. First, the general theory of correlation is discussed. Second, the

process for determination of the TDOA is derived for an ideal, noiseless case. Third,

the ideal process is modified to account for the presence of additive white Gaussian

noise (AWGN).

2.3.1 Correlation Theory. There are two basic forms of correlation: cross-

correlation and auto-correlation. Generally, correlation describes a measure of “simi-

larity” between two signals [26]. The difference between the two forms of correlation

involves the inputs to the function. Cross-correlation measures similarity between two

different signals, whereas auto-correlation measures similarity between two regions of

the same signal. The generalized cross-correlation function of two real signals x and

y is

Rxy(τ) = E[x(t)y(t − τ)] (16)

where E is the expected value operator. Due to the fact that the signals are observed

for a finite observation time, Rxy(τ) can only be estimated. An estimate of the delay

is provided by the argument τ that maximizes (16). Assuming ergodicity, (16) can

be rewritten as

R̂xy(τ) =
1

T − τ

∫ T

τ

x(t)y(t − τ)dt (17)

where T is the observation time [24,30]. This expression is for continuous-time cross-

correlation. For discrete-time cross-correlation, (17) is written as
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R̂xy(m) =
1

N

N−1∑

n=0

x[n]y[n − m] (18)

2.3.2 Ideal TDOA Measurements Using Correlation. In terms of the two-

receiver TDOA case discussed previously, the similarity measured by the cross-correlation

is a function of the relative time difference between the signals [26]. The two signals

input to the correlation algorithm are modeled as the same signal from a given trans-

mitter where one signal is time delayed relative to the other, as illustrated in Figure 7.
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Figure 7: TDOA Measurement From Correlation

For the general case, let two signals x(t) and y(t) be sampled with a sample

interval of ∆t. The discrete-time cross-correlation of the two signals R̂xy is given by

(18). The correlator processes the sampled signals for a range of time shifts until the

cross-correlation peak occurs. The time shift corresponding to the peak is the delay

estimate d̂. Written in terms of a maximum likelihood (ML) estimator d̂ becomes

d̂ = arg max
m

[

R̂xy(m)

]

= (n̄ − m)∆t (19)

where n̄ denotes the middle of the time shift index. The difference between m and

n̄ is the delay estimate in units of samples which is then converted into seconds by

multiplying by ∆t. This is converted into a TDOA pseudorange measurement by

multiplying by the speed of light as described in Section 2.2.1, specifically in (5).

Figure 8 further illustrates this concept of using correlation to detect such a

time delay (i.e., measure a TDOA). The plotted output is the cross-correlation of two

random signals, both with a length of 6000 samples. The two signals are the same,
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except one is shifted in time by 200 samples. Note that the cross-correlation peak

occurs 200 samples off the center of the sample index. Therefore, when subtracted

from the center of the sample index, the delay estimate is product of the measured

200 samples and the appropriate ∆t .
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Figure 8: Cross-Correlation of Sample Signals

2.3.3 Non-ideal TDOA Measurements Using Correlation. The examples

presented thus far have been for an ideal, noiseless channel. In a real-world chan-

nel model, noise, multipath, and other interference sources degrade and ultimately

distort the signals and affect the delay estimate. Error analysis has shown filtering

prior to the correlation improves the accuracy of the delay estimate [15, 24]. The

ultimate effect of the filtering accentuates the signal characteristics at which the SNR

is the highest and simultaneously suppress the noise from the channel [24]. In the

frequency domain, filtering is the same as multiplying the power spectral density by

some weighting function. The selection of the weighting function requires some a pri-

ori knowledge about the signal and noise characteristics, which may not be available
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in a SoOP environment. However, in some SNR conditions it has been shown that

the ML estimator (as described in Section 2.3.2) is equivalent to filtering [24]. Ad-

vanced techniques like the linear fit peak estimators presented by Eggert and McEllroy

enhance performance of the correlator in poor SNR environments [7, 28].

This thesis focuses on a proof-of-concept; therefore, simplifying assumptions are

made. To maximize computational efficiency, the general correlator was used without

a fit peak estimator. It is also assumed that sufficient a priori information about the

channel was not available. Therefore, optimal filtering could not be guaranteed, and

as such, filtering was not implemented.

To model the channel for this research, there were many different aspects to

account for. Modeling the channel as an AWGN channel provided an adequate model

for most of the characteristics [21, 35]. In order to limit the scope of this research to

a proof-of-concept, multipath was not accounted for in the channel model. Multipath

mitigation is a vital technique to ensure accurate TDOA estimation in channels where

multipath occurs. The reader is referred to Eggert [7] and McEllroy [28] for discussion

on multipath mitigation techniques.

2.4 Error Statistics

To evaluate the accuracy and effectiveness of the estimators in this research,

two quantities are derived: the covariance and the MSE. Inherent in the discussion

of the covariance measurement is the CRLB. As discussed in this chapter, the range

estimator output provides the input to the position estimator. Hence it is beneficial

to examine the theoretical bound for both estimators in terms of the CRLB as well

as the statistics gathered from simulations. This section first examines the derivation

for the CRLB of the range and position estimates, followed by a discussion of the

generalized variance, and concludes with an explanation of the MSE.

2.4.1 CRLB Derivation. The CRLB assumes an unbiased estimator (in this

case either range or position) and is the theoretical lower bound for the variance [19].
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This section explicitly derives the CRLB for the baseline, two-receiver case presented

in the preceeding sections. This serves as background for the derivation of the CRLB

for variations of the estimator presented in Chapter III.

2.4.1.1 CRLB on Range Estimation. Section 2.2.1 describes the the-

oretical delay from which a range estimate is computed in (7). Section 2.3.2 expands

on this concept and describes the measured delay in terms of a ML estimator. The

following result for the CRLB of the TDOA range estimate is rigorously derived by

Hahn and Tretter [15] and again discussed by Chan and Ho [19]. Whereas both of

these works define the TDOA vector in terms of a source localization problem, the

TDOA measurements presented here are in terms of the navigation problem. Recall

the definition for the TDOA measurement from the kth transmitter as defined in (4).

Let the vector of all TDOA measurements be defined as

d̂ = [d̂1 d̂2 ... d̂K ]T (20)

Each measurement in d̂ is dependent on both the signal and the noise which

are assumed to be mutually independent, zero mean, stationary Gaussian random

processes. The estimated TDOAs are distributed

d̂ ∽ N (d, Q) (21)

where d is the vector similar to d̂ containing the actual TDOA measurements and Q

is

Q =

{
2T

2π

∫ Ω

0

ω2 S(ω)2

1 + S(ω)trN(ω)−1

×

[

tr

(

N(ω)−1

)

Np(ω)−1 − Np(ω)−111T Np(ω)−1

]

dω

}
−1

. (22)
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Here,

T is the observation time,

0 to Ω is the frequency band processed,

S(ω) is the signal power spectrum,

N(ω) is the noise power spectral matrix,

Np(ω) is the lower right K − 1 by K − 1 partition of N(ω),

1 is a vector of unity which has the same size as Np(ω).

Assumptions about the characteristics allow (22) to be simplified. Let the signal

and noise spectra be defined as

S(ω) = ε , 0 ≤ ω ≤ Ω (23)

N(ω) =
N0

2
, 0 ≤ ω ≤ Ω (24)

Under this assumption, everything except the ω2 term in (22) is constant over the

frequency band. The noise is further assumed to be spatially incoherent, which allows

for the simplification of Q as described by Chan and Ho [19]:

Q =
1

2
g−1











K − 1 −1 −1 ... −1

−1 K − 1 −1 ... −1
...

...
...

...
...

−1 −1 −1 ... K − 1











−1

(25)

g =
T

2π

∫ Ω

0

ω2 S(ω)2/N(ω)2

1 + KS(ω)/N(ω)
dω (26)

This expression for Q of the range estimate in (25) and (26) incorporates the assump-

tions made for the characteristics of the signal and noise that are consistent with the

model used for this research.
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2.4.1.2 CRLB on Position Estimation. The CRLB derivation of the

position estimate has been rigorously developed for the source localization prob-

lem [11, 15, 19, 39]. The derivation of the CRLB of the position estimate for the

navigation problem discussed in this research is presented in Section 3.4.2. The gen-

eral CRLB for the case of a vector parameter and Gaussian observations is presented

here using the derivation presented by Kay [21]. Let the vector of Gaussian observa-

tions be distributed

x ∽ N (µ(θ), C(θ)) (27)

where both the mean and covariance may depend on θ. The CRLB is

COV(θ) ≥ B (28)

Bij =

[(
∂µ

∂θi

)T

C−1

(
∂µ

∂θj

)

+
1

2
tr

(

C−1 ∂C

∂θi
C−1 ∂C

∂θj

)]
−1

(29)

For the specific case where the covariance is not a function of the parameter to be

estimated θ, the distribution becomes

x ∽ N (µ(θ), σ2I) (30)

which simplifies the expression for the CRLB to

Bij =
1

σ2

[(
∂µ

∂θi

)T (
∂µ

∂θj

)]
−1

(31)

2.4.2 Generalized Variance. In this research, both the CRLB and simulated

data provide a covariance matrix describing characteristics of the estimator. In the

case of the position estimate, and, assuming the error distribution is Gaussian, these

matrices can be overlaid with the biased position estimate (or true position for an
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unbiased estimator) to provide intuition of the relative accuracies of the final position

estimate. From the covariance matrix, the circular error probable (CEP) can be

approximated or error ellipses can be defined. Both of these measures offer intuition

about geometric accuracy of the estimator. A similar measure of the covariance that

reduces the matrix to some scalar value is computed by taking the determinant of a

portion of the covariance matrix. Let the covariance matrix of the parameter θ be

COV(θ) = C (32)

To illustrate the potential need to partition C, consider the case described in

Section 2.2.2. Using that estimator, C is a 3 × 3 matrix where the elements of the

third row and third column are functions of the system clock bias. In terms of the

position estimate, the relevant position data is contained in the upper left 2 × 2

partition:

Cp =




C1,1 C1,2

C2,1 C2,2



 (33)

The determinant of Cp results in a scalar in units of meters raised to the fourth

power (m4). Therefore, the fourth root of the determinant produces a scalar in units

of meters and will herein be referred to as the “generalized variance”:

σg = |Cp|
1/4 (34)

The generalized variance is used in this research to plot the CRLB of an esti-

mator and to compare covariance data from simulation outputs.

2.4.3 MSE Calculation. The true usefulness of the error statistics ultimately

lies in how well the mathematical assumptions correspond to the actual navigational

measurements. Thus far, the error statistics have relied on the assumption that the
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measurement error has zero-mean and the variance is known on the basis of a priori

information and has known covariances with other measurements. In the case where

the bias value is known to be present but the value is unknown, the total MSE can

be described by the variance due to the random error plus the square of the error

bias [11, 21].

To define the MSE, let the bias of a general estimator θ̂ of the parameter θ be

Bias(θ̂) = E

[

θ̂ − θ

]

. (35)

The MSE for θ̂ is

MSE(θ̂) = E

[

(θ̂ − θ)2

]

= E

[{

(θ̂ − E[θ̂]) + (E[θ̂] − θ)

}2]

= E

[

(θ̂ − E[θ̂])2

]

+ (E[θ̂] − θ)2

= VAR(θ̂) + Bias(θ̂)2. (36)

2.5 Summary

This chapter provided the background necessary for further discussion of the

exploitation of AM SoOP for navigation using TDOA measurements. First, the char-

acteristics of broadcast AM signals were discussed. Next, the TDOA positioning

algorithm was derived followed by a discussion of TDOA estimation. Finally, the dif-

ferent measures of error statistics were discussed, including the CRLB, the generalized

variance, and MSE. This chapter provided a review of existing work which served as

a technical baseline for the new material that is presented in the following chapters.
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III. Methodology

This chapter describes the methodology used for performing the proof-of-concept

simulations for AM SoOP navigation using TDOA measurements. Chapter II

provided the background, and this chapter synthesizes those concepts into the overall

methodology. First, an overview of the simulation environment is provided, and each

functional component in the system model is explained. This forms the basis for

the baseline simulation using the TDOA algorithm from Chapter II. Second, the

model is expanded into cases where error is inserted into the a priori data, as well

as cases where assumptions about the a priori data are removed and the estimation

algorithms for such cases are derived. Third, the order of simulation and description

of the simulation environment are provided. Fourth, the error statistics are further

derived from Chapter II.

3.1 System Model Overview

In order to successfully engage in the proof-of-concept simulations, the baseline

simulation environment must first be established for comparison to the new estima-

tion algorithms. The system model arranged generic AM transmitters in real-world

configurations, and simulated signals were transmitted from each station. Receivers

collected and sampled the signals received through an AWGN channel. Pseudor-

anges were computed from the TDOA algorithm discussed in Chapter II, and a two-

dimensional position estimate was produced along with the estimated system clock

bias. The system model used for the simulation environment in this research is shown

in Figure 9.

The blocks for the modulator and demodulator and the simulation of multipath

and path loss are shaded to indicate where those functions could be added; however,

for this simulation environment, they were not included. The baseline simulation

will herein refer to the implementation of the baseline TDOA estimation algorithm

discussed in Chapter II in the final block of the system block diagram. Specifically, the

baseline simulation incorporated the true known positions for the transmitters and
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Figure 9: System Block Diagram (Inactive Blocks Shaded)

the reference receiver in the calculation of the final position estimate. The baseline

simulation was used to validate the simulation environment and used to compare

the performance of the new estimation algorithms presented in this research. The

following sections discuss each block in the system block diagram. All simulations

were executed using Matlabr .

3.1.1 Environment. There are two components to the Environment block:

the locations of the transmitters and the locations of the receivers. The construction

of the transmitter configurations is discussed followed by a description of the receiver

configurations.

3.1.1.1 Transmitter Configurations. To generate realistic AM trans-

mission environments, FCC data was used to place the transmitters [9]. The FCC

database contained two-dimensional information for each transmitter and provided

the relative distance and angle from any one of the transmitters. This conveniently

allowed for the transmitters to be placed using a generic coordinate system in the

simulation environment. The reference transmitter (from which all distances and an-

gles were computed in the FCC database) was centered at (0, 0), and the remaining

transmitters were placed using the range and angle data. A total of six transmitter

configurations were generated. One configuration was arbitrarily generated (not using
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any FCC data). The remaining five configurations were chosen from locations across

the United States based on uniqueness relative to the other configurations and the

ability to compare to previous work (if applicable). The six configurations are shown

in Figure 10.

Previous research included real-world signal collections in Boston, MA [16] and

Cincinnati, OH [7, 28]. As such, AM configurations from both cities were used.

Phoenix, AZ, Seattle, WA, and Los Angeles, CA all presented unique transmitter

configurations compared to the other configurations. In previous sections, the inac-

curacies of the transmitter position data is noted. In the simulation environment,

this is not a concern as the true transmitter positions are defined in the environment.

Furthermore, the interest is primarily in generating representative transmitter config-

urations so that the proof-of-concept simulations closely model real-world conditions.

3.1.1.2 Receiver Configurations. The relative position of either the

reference or mobile receiver to the transmitters affects the accuracy of the TDOA

measurement and overall system output. Therefore, it was prudent to ensure that

a sufficient number of variations were examined. The local coordinates of the trans-

mitters remained constant and the coordinates of the reference and mobile receivers

were changed based on the simulation type. For all receiver configurations, the refer-

ence receiver(s) was placed in the same location, and the mobile receiver position was

varied. Figure 11 displays the four possible receiver configurations for a two-receiver

TDOA computation. Note that the reference receivers labeled RxRef2 and RxRef3 are

only used in the multiple reference receiver estimator case presented in Section 3.2.3.

Selecting a transmitter configuration and receiver configuration pair allowed

for the computation of the LOS propagation time from each transmitter to each

receiver. This simulated time was needed to ultimately simulate the TDOA. For a

given transmitter and receiver pair, the LOS propagation time is

tprop =

√

(xRx − xTx)2 + (yRx − yTx)2 + (zRx − zTx)2

c
, (37)
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Figure 10: Transmitter Configurations
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Figure 11: Receiver Configurations

where

(xRx, yRx, zRx) are the coordinates of the receiver,

(xTx, yTx, zTx) are the coordinates of the transmitter,

c is the speed of light.

3.1.2 AM Signal Generator. To create the AM signals, message signals of

two types were selected: voice and music. These were selected to be representative of

the general content of broadcast AM stations. All samples were from various sources

in Waveform Audio File Format (WAV) and were sampled at 44.1 kHz. The signals

are briefly characterized in Table 1.

A basic broadcast AM signal was modeled after (1). The inputs to m(t) were

previously discussed, and the values for the remaining parameters are readily available

from the FCC and individual broadcast AM stations.
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Table 1: Message Signal Descriptions
Transmitter # Type Description

1 Voice Talk Radio (Male Voices)
2 Voice Talk Radio (One Male Voice)
3 Voice Talk Radio (One Male Voice)
4 Voice Recorded Speech (One Male Voice)
5 Both Talk Radio (Male Voices & Music)
6 Music Male Lead Singer
7 Voice Talk Radio (One Male Voice)
8 Voice Talk Radio (One Male Voice)

For computational efficiency, the signals were simulated at baseband, that is, not

actually modulated and demodulated. Since this research deals only in a simulation

environment, the advantages to operating at bandpass, such as smaller antenna size,

are not able to be exploited [41]. Furthermore, examples have been used to illustrate

how the number of simulation steps and corresponding simulation time are both sig-

nificantly reduced by simulating at baseband. The main disadvantage to simulation

at baseband is that only the spectral bandwidth around the carrier frequency is repre-

sented. Non-linear behavior outside of the baseband frequencies is lost, for example,

carrier frequency harmonics [12]. However, for this proof-of-concept, the simulation

environment is only required to be representative so that the basic structure and

results are meaningful in application. Such phenomena that are excluded by simulat-

ing at baseband would unnecessarily complicate the results and make analysis of the

results unreliable. Therefore, computational efficiency outweighed the disadvantages

and the simulations were conducted at baseband.

In a real-world system, both receivers would sample a section of the AM signal.

For this simulation, each receiver sampled the first 10000 samples of the simulated

AM signals.

3.1.3 Channel. In this system model, the channel is the sole source of errors

introduced to the transmitted signals. As seen in Figure 9, there are four components

to the channel block: delay, multipath, path loss, and noise.

38



3.1.3.1 Delay. From the configurations described in Section 3.1.1.1

the average magnitude of distance between transmitters was 100 to 101 km. The

propagation time is computed in (37). The average magnitude of the propagation

time for the average distances of the transmitters and receivers in the simulation was

10 to 100 µsec. In order to adequately simulate the delay of the signals, they were

upsampled using linear interpolation so that the correlation algorithm could detect

a reasonably small delay. Therefore, the signal data were sampled at 10 MHz. This

was based on the determination that the Nyquist sampling rate was 40 kHz based on

the knowledge that the maximum possible frequency in the voice or music message

signal was approximately 16 kHz.

Given that the simulation environment was sampled at 10 MHz, the sample

period Ts was 0.1 µsec, sufficiently below any delay given the transmitter and receiver

configurations. This corresponds to a distance of approximately 29.98 meters, which

was the lower limit on the fidelity of the simulation environment. For distances

smaller than 29.98 meters, the simulation would be unable to quantize the delay and

the TDOA algorithm unable to detect it (since it would not detect any delay present).

To account for the propagation delay, the communication signals discussed in

Section 3.1.2 were input in the channel function along with the corresponding prop-

agation time as calculated in (37). Using the sampling frequency fs = 10 MHz and

the corresponding sample period, the quantized delay was

dquant =
tprop

Ts

(38)

where the delay was rounded to the nearest integer value. The delayed signal was

shifted such that the value at the index of the shift was moved to the initial position.

The signal was zero-padded at the end of the function to preserve equal signal lengths.

This concept is illustrated in Figure 12 where the delayed signal is actually time-

advanced, resulting in a 5 sample relative delay between the two signals.
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Figure 12: Zero-padding to Simulate Signal Delay

The following example depicts the output of the whole process and how the

quantized delay appears in the simulation environment. The original signal is a sine

wave; this is analogus to the signals generated as a result of the discussion in Sec-

tion 3.1.2. In this example, the dquant = 5 samples or equivalently a time delay of

0.5 µsec. This delay is shown in Figure 13.

Overall, the effect of applying the delay to the simulated signals allowed for

the TDOA algorithm to estimate a delay and output a position estimate. However,

a real-world channel does not simply delay a signal. There are other aspects of the

channel that must also be accounted for.

3.1.3.2 Multipath. As described in Section 1.3, multipath was not

considered in this proof-of-concept simulation. However, since multipath is a real-

world source of significant error, the position to insert such a channel characteristic

was included.

3.1.3.3 Path Loss. Similar to simulating multipath as part of the

channel, the path loss could affect the accuracy of the received signal and the position

estimate. For simplicity of the proof-of-concept, path loss was not explicitly accounted

for as part of the channel. The block is left as an indication of where path loss would

be accounted for. In this simulation, the path loss was generally accounted for as
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part of the overall SNR, hence the signal degradation over the channel was fully

consolidated in the simulation of the channel noise.

3.1.3.4 Noise. The final step in the channel was to add noise to the

signal. As discussed in Section 2.3.3, AWGN is a sufficient representative of real-world

noise. The Matlabr awgn function was utilized for this purpose. The parameters of

the awgn function allowed for the overall channel SNR to be regulated by the amount

of noise (relative to the existing signal power). The awgn function calculated the

signal power and adjusted the noise power to output the desired SNR in dB. SNR is

the ratio of the average signal power to the average noise power and is of the form

shown in (39), obtained from [7] and [28].

SNRdB = 10 log10

(
Psignal

Pnoise

)

(39)
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3.1.4 TDOA Algorithm. The final step in the system was to input the re-

ceived signal into the TDOA algorithm. This algorithm consisted of the computation

of a range estimate from the mobile receiver (Section 2.3) to the transmitter and sub-

sequently the computation of the ML estimate for the mobile position of the receiver

and the system clock bias (Section 2.2).

3.1.4.1 Range Estimation. Recall from Section 2.2.2 that a range

estimate from the transmitter to the mobile receiver must exist to begin the iterations

using the baseline estimation algorithm. The TDOA measurement is required to

compute the range estimate for the transmitter to the mobile receiver given by (5).

As detailed in Section 2.3, cross-correlation is the among the techniques that are

considered low-complexity and computationally efficient.

The real-time data link required no actual implementation in the simulation

environment — it inherently existed. The inputs to the correlation algorithm were two

signals from the same transmitter that had the appropriate channel effects added to

simulate the received signal at each receiver. The mean was computed and subtracted

from each received signal then the two signals were cross-correlated using the Matlabr

xcorr function. The index of the peak value was identified and subtracted from the

middle of the index according to (19), and the result was the quantized TDOA. The

quantized TDOA was multiplied by the sample period Ts to convert it into units of

time. From this measurement, the pseudorange from the transmitter to the mobile

receiver was computed according to (5). This process is shown in Figure 14.
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Figure 14: TDOA Measurement via Cross-Correlation
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3.1.4.2 Position Estimation. The TDOA pseudoranges were com-

puted for all of the transmitters to the mobile receiver. This was accomplished by

repeating the process described in Section 3.1.4.1 for all received signals. These signals

were grouped into a vector and given as an input to the baseline estimation algorithm

as described in Section 2.2.2 and specifically as part of the input to (11).

The other part to the baseline estimation algorithm was the initial guess. For

the baseline simulation, all coordinates were in a relative frame. The initial estimate

was (0,0) based on the fact that the system assumes that the mobile receiver could

be anywhere in the frame and had an equal probability of being in any quadrant.

Different configurations test the effect of distance between the initial guess and the

true position of the mobile receiver. The initial guess for the system clock bias (herein

referred to as “clock bias”) was 0 sec.

The baseline estimation algorithm is an iterative process. The number of it-

erations directly depends on the threshold set on the output of (14) and (15). The

magnitude of these thresholds can be tailored based on previous knowledge of the

environment, desired accuracy if one direction is not a critical as others, computation

time, and other considerations. For this simulation, the threshold was set based on

the best possible outcome due to the sampling frequency fs. For the distance coordi-

nates, the correction threshold is set to 10−6 meters — that is, the algorithm iterates

until the estimated position error for each coordinate drops below the threshold. For

the clock bias, the threshold was set at 10−9 meters. This threshold corresponds to a

clock bias of approximately 3.3 × 10−18 seconds which is a sufficiently low correction

to the clock bias given that some systems may have a clock bias of up to 10−5 seconds.

If the threshold conditions are not met in under 100 iterations, the estimate at the

100th iteration is considered the final estimate and the iteration process is aborted.

3.2 Variations on Baseline Estimator

The algorithm development in Chapter II and the simulation environment dis-

cussed in this chapter thus far have been based on the two-receiver baseline model
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where the positions of the transmitters and the reference receiver were known a priori.

This section discusses how the simulation environment was modified to simulate the

removal of those assumptions as well as present the derivation for three additional

position estimation algorithms referred to herein as “estimators.”

3.2.1 Imprecise Prior Information. To examine the effect of imprecise a

priori information, two cases are presented. The first case is imprecise a priori trans-

mitter position information. The second case is imprecise a priori reference receiver

position information.

3.2.1.1 Imprecise Transmitter Positions. To analyze the effect of

imprecise transmitter positions, the simulation environment was produced in the same

way as discussed in Section 3.1, and the true coordinates of the transmitters were

used to generate the AM signals and the corresponding delays. The true coordinates

were also used in the range and position estimation algorithms. Therefore, erroneous

transmitter position data was generated to replace the truth data as inputs to both

algorithms. Given that the errors from the FCC may be up to or exceed 100 meters,

and most site surveys can be accomplished with an accuracy of approximately ± 10

meters [16], the error for each transmitter coordinate is distributed (in units of meters)

ǫ
(k)
Txx

∽ U [−15, 15] (40)

The built-in Matlabr function rand was used to generate the errors which

were then combined for for the vector ǫTx — the vector of error parameters for each

coordinate of each transmitter. Figure 15 shows the error parameter generation and

the modification to the system block diagram from Figure 9.

The result is that the truth data was used only to generate the signals. The

erroneous transmitter positions were then used in the range estimate described in

Section 2.2.1 and the position estimate in Section 2.2.2.
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Figure 15: Simulated Error in Transmitter Position

3.2.1.2 Imprecise Reference Receiver Position. The exact position of

the transmitter was one component of the a priori knowledge that enabled both esti-

mators to produce a final estimate. The other component required for the estimator

was the exact position of the reference receiver. Specifically, the position of the ref-

erence receiver was explicitly used in the TDOA calculation of the range estimate

described in Section 2.2.1. The error parameter is distributed (in units of meters)

ǫref ∽ N (0, σ2I), σ = 25 meters (41)

This parameter is created using the built-in Matlabr function randn. The normal

distribution is justified based on the fact that the error may be from an imprecise GPS

position, a “last known” position, or simply a guess of the position. Figure 16 shows

the inserted position error. The dashed line to the position estimate block indicates

that the coordinates of the reference receiver are not a direct input to the baseline

estimation algorithm. However, the direct effect on the range estimate does impact

the accuracy of the final position estimate.

3.2.2 Two-Unknown Receivers Estimator. In the previous section, the case

of an imprecise a priori position for the reference receiver was explored. It is also
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worth examining the related case where a reference receiver is known to be present

but there is no a priori position information. Given this case, the estimator now

has two or three additional unknowns to solve for (either a two or three dimensional

position estimate). The immediate impact is that there must be enough transmitters

present to estimate the coordinates for the mobile receiver, the clock bias, and the

new unknown set of coordinates for the reference receiver.

The desire is to derive a ML estimator similar to (11) that computes corrections

to an initial guess. To derive an estimator for this case, a two-dimensional position

estimate is considered. The following derivation closely follows that from Section 2.2.2.

Let the vector of unknown parameters be defined

x = [xm ym xr yr b]T (42)

where

xm is the unknown x coordinate of Rxmob,

ym is the unknown y coordinate of Rxmob,

xr is the unknown x coordinate of Rxref ,

yr is the unknown y coordinate of Rxref ,

b is the unknown clock bias in meters.
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As compared to the derivation in Chapter II, the unknown position of the refer-

ence receiver is the only addition to the vector of unknown parameters. Therefore, the

model relating the true position and clock bias to the observations is still linear, simi-

lar to other derivations where only one receiver was unknown [15,19,39]. Specifically,

the model for this case is

cd̂ = Gx + w (43)

where

c is the speed of light,

d̂ is the vector containing the TDOA values as described in Section 2.4.1.1,

G is the observation matrix (see (47)),

w is the AWGN noise vector as described in Section 3.1.3.4.

Since the desire is to generate the ML correction estimate, let the correction vector

be

∆x = [∆xm ∆ym ∆xr ∆yr ∆b]T . (44)

Given that the linearized model still holds true, the general expression for a ML

estimator of ∆x is

∆x̂ = (GTG)−1GT h (45)

where the terms for G and h must be derived for the new five-element ∆x. For the

case derived in Section 2.2.2, h was the sum of the TDOA measurement and the

known distance between the transmitters and the reference receiver. In this case,

the latter distance is no longer a known quantity. Therefore, the only remaining

element in the measurement vector h is the TDOA measurement. Let the elements
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of the measurement vector be the difference between the observed TDOA cd̂(k) and

the distance between the receivers given the initial guess cd̂
(k)
0 :

h = [(cd̂(1) − cd̂
(1)
0 ) (cd̂(2) − cd̂

(2)
0 ) . . . (cd̂(K) − cd̂

(K)
0 )]T (46)

The elements of the observation matrix G are defined as

G =











∂cd̂(1)

∂xm

∂cd̂(1)

∂ym

∂cd̂(1)

∂xr

∂cd̂(1)

∂yr

∂cd̂(1)

∂b

∂cd̂(2)

∂xm

∂cd̂(2)

∂ym

∂cd̂(2)

∂xr

∂cd̂(2)

∂yr

∂cd̂(2)

∂b
...

...
...

...
...

∂cd̂(K)

∂xm

∂cd̂(K)

∂ym

∂cd̂(K)

∂xr

∂cd̂(K)

∂yr

∂cd̂(K)

∂b











(47)

To explicitly solve for the elements of G, the kth term of the first column of G is

examined first. The partial derivative simplifies to

∂cd̂(k)

∂xm
=

∂

∂xm
(r

(k)
mob − r

(k)
ref + b)

=
1

2
√

(xk − xm)2 + (yk − ym)2

(

− 2(xk − xm)

)

= −
(xk − xm)

r
(k)
mob

(48)

By analogy, this extends to the other derivatives with respect to ym, xr, and yr. The

bias term differentiates to 1 just as in (11). Therefore, G is rewritten

G =












− (x1−xm)

r
(1)
mob

− (y1−ym)

r
(1)
mob

(x1−xr)

r
(1)
ref

(y1−yr)

r
(1)
ref

1

− (x2−xm)

r
(2)
mob

− (y2−ym)

r
(2)
mob

(x2−xr)

r
(2)
ref

(y2−yr)

r
(2)
ref

1

...
...

...
...

...

− (xK−xm)

r
(K)
mob

− (yK−ym)

r
(K)
mob

(xK−xr)

r
(K)
ref

(yK−yr)

r
(K)
ref

1












(49)
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Using these definitions for h and G, the Newton-Raphson method is again

implemented such that the final estimate is

x̂ = x0 + ∆x̂ (50)

where x̂ is the vector containing the sum of the initial guess for all five unknown

parameters and all corrections such that a predetermined threshold is met similar to

the terms in (14) and (15).

3.2.3 Multiple Reference Receivers Estimator. As a mitigation technique to

combat errors in the a priori knowledge, multiple reference receivers may be added

to the system. In this research, the multiple reference receiver algorithm is developed

around the baseline algorithm presented in Section 2.2.2. Specifically, the position of

all of the reference receivers was known. The method of computing a position estimate

remains the same iterative method described for the baseline case. The expression

for G and h are modified to account for additional observations from the additional

reference receivers. The additional observations are similar to multiple instances of the

baseline case that are combined to form a single expression. Any number of reference

receivers may be added to the system. For example if there are K transmitters and

a two-dimensional estimate was desired, G would be K × 3. Adding more reference

receivers such that there is a total of three reference receivers, two additional clock

bias estimates become required. In this example, the vector of unknown parameters

is

∆x = [∆xm ∆ym ∆b1 ∆b2 ∆b3]
T . (51)

In this case, G becomes a 24 × 5:
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G =




































− (x1−xm)

r
(1)
m

− (y1−ym)

r
(1)
m

1 0 0

...
...

...
...

...

− (xk−xm)

r
(K)
m

− (yk−ym)

r
(K)
m

1 0 0

− (x1−xm)

r
(1)
m

− (y1−ym)

r
(1)
m

0 1 0
...

...
...

...
...

− (xk−xm)

r
(K)
m

− (yk−ym)

r
(K)
m

0 1 0

− (x1−xm)

r
(1)
m

− (y1−ym)

r
(1)
m

0 0 1

...
...

...
...

...

− (xk−xm)

r
(K)
m

− (yk−ym)

r
(K)
m

0 0 1




































(52)

where the first two columns repeat every K rows with the possible exception of the

addition of different clock bias estimates between the multiple reference receivers

and the mobile receiver. Using the same example, there would be two additional

sets of TDOA-based pseudorange measurements computed using the positions of the

additional reference receivers:

h = [∆ρ
(1)
r1 . . . ∆ρ

(K)
r1 ∆ρ

(1)
r2 . . . ∆ρ

(K)
r2 ∆ρ

(1)
r3 . . . ∆ρ

(K)
r3 ]T (53)

where the subscript indicates the reference receiver position that the range estimate

is based on and ∆ρ(k) is generally defined in (7).

3.2.4 Transmitter Position Correction Estimator. The estimator proposed

in this section is similar to the case described in Section 3.2.1.1 where the a priori

transmitter positions are known to contain errors (within some bound), except the

desire is to estimate the error in the transmitter positions and correct it to improve

the accuracy of the estimate of the mobile receiver. The number of known param-
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eters must still exceed the number of unknown parameters in order to be able to

solve the system of equations. Therefore, in this case, there will be a certain number

of precisely known transmitter positions, and instead of the baseline estimator (as

described in Section 3.2.1.1), the multiple reference receiver scenario is implemented

and the corresponding estimator altered. For the purposes of presenting the trans-

mitter position correction estimator (herein referred to as the “transmitter correction

estimator”), the case of two unknown transmitters is considered. In the simulations,

the erroneous transmitters are the seventh and eighth transmitters. For the expla-

nation of the concept, the two erroneous transmitters are generically labeled here as

the first and second transmitters. The position of the three reference receivers are

known and accurate, and the position of the mobile receiver, the clock biases, and

the two erroneous transmitter positions are to be estimated. Therefore, the vector of

unknown parameters is

∆x = [∆xm ∆ym ∆xT1 ∆yT1 ∆xT2 ∆yT2 ∆b1 ∆b2 ∆b3]
T (54)

where xT i and yT i indicate the erroneous x or y coordinate of the transmitters. There

is no change to the linear model described in (43); therefore, given the number of

reference receivers, G is the same matrix described in (52) except the partial derivative

terms now reflect the elements of the vector shown in (54). The partial derivative

terms for the first two columns are the same and repeat every K rows in the same

way described in the Section 3.2.3:

Gmobile =















− (x1−xm)

r
(1)
m

− (y1−ym)

r
(1)
m

− (x2−xm)

r
(2)
m

− (y2−ym)

r
(2)
m

− (x3−xm)

r
(3)
m

− (y3−ym)

r
(3)
m

...
...

− (xK−xm)

r
(K)
m

− (yK−ym)

r
(K)
m















(55)
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The clock bias columns also repeat and share the same pattern as in (52). The unique

part of this estimator is in the terms expressing the partial derivative of the TDOA

measurement with respect to the x and y coordinates of the erroneous transmitters.

Using the model for the TDOA measurements described in (48), for this example, the

columns containing these terms take the form

G
(ri)
Tx1 =












(

(x1−xm)

r
(1)
m

− (x1−xri)

r
(1)
ri

) (

(y1−ym)

r
(1)
m

− (y1−yri)

r
(1)
ri

)

0 0
...

...

0 0












(56)

G
(ri)
Tx2 =















0 0
(

(x2−xm)

r
(2)
m

− (x2−xri)

r
(2)
ri

) (

(y2−ym)

r
(2)
m

− (y2−yri)

r
(2)
ri

)

0 0
...

...

0 0















(57)

where the ri superscript indicates the reference receiver. This pattern repeats for as

many reference receivers as are present. The final estimator for the three reference

receiver case is written as

G =








Gmobile G
(r1)
Tx1 G

(r1)
Tx2 1K×1 0K×1 0K×1

Gmobile G
(r2)
Tx1 G

(r2)
Tx2 0K×1 1K×1 0K×1

Gmobile G
(r3)
Tx1 G

(r3)
Tx2 0K×1 0K×1 1K×1








(58)

The observation vector h contains the TDOA measurements as described in (46).

The difference between the estimator described in Section 3.2.2 and this estimator is

that the positions of the reference receivers are all known (so that the quantity of

known parameters outnumbers the quantity of unknown parameters). Therefore, the
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known positions of the reference receivers are combined with the measured TDOAs

and the h for this case becomes the vector described in (53).

For the simulation of this estimator, the transmitter errors were inserted to the a

priori data as described in Section 3.2.1.1, except that only two transmitter positions

were altered. Once corrections to the transmitter positions were computed, they were

added to the a priori data just as the corrections to the mobile receiver and clock

bias were added to the initial guess. In this scenario, the error of the transmitter

was known to be present and the magnitude of the error was bounded. Therefore,

as the algorithm iterates, a check was put in place to ensure that all corrections to

the initial data did not place the transmitter position estimate outside of the bound.

If any correction caused the transmitter position estimate to exceed the bound, the

correction from that iteration was omitted.

3.3 Simulation Test Environments

The previous sections discussed the baseline simulation and the subsequent vari-

ations that can be made to it. This section discusses the order in which these simula-

tions were executed and explains the needed modifications to the baseline simulation

(if any). Table 2 outlines the different variations of simulations performed.

The environment geometry is herein defined as the combination of the trans-

mitter configuration and the receiver configuration detailed in Section 3.1.1.1 and

Section 3.1.1.2, respectively. Each of the six transmitter configurations were paired

with the four receiver configurations to create the total number of environment ge-

ometries. All of the environment geometry combinations were subjected to each of

the simulation conditions and estimators listed in Table 2. Furthermore, within each

environment geometry, a total of 100 observations were taken for each SNR value. A

total of 26 SNR values were simulated where the range was from -10 dB to 10 dB in

1 dB steps and then from 20 dB to 60 dB in 10 dB steps, unless otherwise noted in

Chapter IV.
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Table 2: Simulation Variations

Simulation A Priori True b Error Estimated
# Description Rxref Tx (sec) Rxref Tx Rxmob b Rxref

1 Baseline w/ Bias X X 0 X X

2 Baseline w/o Bias X X 10−7 X X

3 Tx Uncertain X X 0 X X X

4 Rxref Uncertain X X 0 X X X

5 Tx/Rxref Uncertain X X 0 X X X X

6 Two-Unk w/ Bias X 0 N/A X X X

7 Two-Unk w/o Bias X 10−7 N/A X X X

8 Multi-Ref w/ Bias X X 0 X X

9 Multi-Ref w/o Bias X X Varies∗ X X

10 Tx Correction X X 0 ∽ X X

∗For three reference receivers the true biases are 10−7, 5 × 10−6, and 2 × 10−5.
The “∽” symbol indicates that error is added to two transmitters only.

For additional clarity of Table 2, the a priori data columns indicate the truth

data available to the estimator to calculate the position estimate. The true bias b

column shows the clock bias between the receivers that was inserted to the simulation.

The error column indicates whether or not an error was inserted into the a priori data

(as described in Section 3.2.1). The estimated column indicates which parameters

the output of the estimator contained. Since Simulation #10 was the only estimator

that output transmitter position estimates, it was not explicitly noted in Table 2.

Also, the initial conditions described in Section 3.1.4.2 are true for all cases except

Simulation #6 and #7. In order to ensure convergence, the initial guess was 2 km

off in both coordinates for the reference receiver and 1 km off in both coordinates for

the mobile receiver. The clock bias initial guess remained 0 sec.

3.4 Accuracy and Error Statistics

For each of the simulations detailed in Table 2, the MSE of the range estimate

and position estimate were computed as described in Section 2.4.3. The simulation

also allowed for the bias, variance/covariance, and generalized variance to be exam-

ined for a particular combination of simulation parameters or environment geometries.
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The simulated statistics may be compared to each other or may be discussed (if not

directly compared) to the theoretical bounds derived in the CRLB. The CRLB for the

range estimate was derived in Section 2.4.1.1. The CRLB derivations presented here

use the general forms discussed by Foy [11] and Torrieri [39], with specific assumptions

and notation based on Chan and Ho [19] and Martin et al. [27]. A general CRLB for

the baseline estimator was presented in Section 2.4.1.2. The following sections explic-

itly derive the CRLB for the two-unknown receiver estimator, the multiple reference

receiver estimator, and the transmitter correction estimator.

3.4.1 CRLB for Baseline Estimator. The CRLB for estimating the unknown

position of Rxmob is similar to the well-developed CRLB for the source localization

problem. Since this CRLB is defined here specifically for the baseline case, let the

baseline parameter vector be similar to the vector solved for in Section 2.2.2:

xb = [xm ym b]T . (59)

where the subscripted “b” indicates the vector contains the parameters for the baseline

case. The estimator described in Section 2.2.2 is an implementation of a ML estimator

of a vector of TDOA measurements which is known to be asymptotically Gaussian

with a covariance matrix given by Q from (25) [15, 19]. Recall from (5) and (7)

that the measurement vector consisted of the sum of the measured TDOAs and the

known range between Rxref and the transmitters. Let the measurement vector or

pseudoranges to the mobile receiver be explicitly defined here as

ρm = [(r(1)
m + b) (r(2)

m + b) . . . (r(K)
m + b)]T (60)

Therefore, the conditional probability density function (PDF) of the measure-

ment vector ρm is
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p(ρm|xb) =
1

(2π)
K

2 |Q|
1
2

×exp

[

−
1

2

(

ρm − rm

)T

Q−1

(

ρm − rm

)]

(61)

where it is noted that rm is a function of the position of the mobile receiver and the

clock bias, as in (59).

A parallel is drawn between the source localization CRLB derivation by Chan

and Ho [19] and the desired expression for the CRLB for the baseline estimator.

For the source localization problem, the conditional PDF is computed based on the

TDOA measurement vector and the estimated position. In this baseline navigation

case, the TDOA measurement vector is replaced by the pseudorange vector which, as

discussed, is the same as the TDOA measurement vector with the known constant

of the range between Rxref and the transmitters added to it. Therefore, since only

a scalar — independent of the TDOA measurement and the position of Rxmob — is

added to the TDOA measurement vector, the derivation presented by Chan and Ho

is applied to this case.

Each position coordinate of Rxmob can be expressed as a nonlinear function of

the pseudorange measurement ρm, namely the TDOA measurement. Using Taylor-

series expansion around the pseudorange vector, the bias and variance of the position

are found to be proportional to the pseudorange covariance matrix Q. If the TDOA

variations are sufficiently small such that the variance is the dominant error term

compared to the bias, the estimator is considered unbiased and the CRLB on xb is

COV(xb) ≥

{

E

[(
∂

∂xb

ln p(ρm|xb)

)(
∂

∂xb

ln p(ρm|xb)

)T ]}
−1

(62)

The partial derivative of the log-likelihood term is

56



∂

∂xb

ln p(ρm|xb) =
∂rm

∂xb

Q−1(ρm − rm) (63)

This simplifies the CRLB expression to

COV(xb) ≥

(
∂rm

∂xb

T

Q−1∂rm

∂xb

)
−1

(64)

The partial derivative terms are equivalent to the derivation shown in (48).

Given that the partial derivative of the vector xb contains three elements, the CRLB

simplifies to

COV(xb) ≥

(

GT
b Q−1Gb

)
−1

(65)

where Gb is the matrix G defined in (12).

3.4.2 CRLB for Two-Unknown Receivers Estimator. This section derives

the CRLB for the estimation technique detailed in Section 3.2.2. The parameter vec-

tor x is defined in (42). In Section 3.4.1, the conditional PDF was derived for the

pseudorange measurement ρm based on the known range between Rxref and the trans-

mitters. In the case considered here, the range is no longer known and the position

of Rxref must be estimated. Therefore, the conditional PDF of the vector containing

the TDOA measurements (multiplied by the speed of light for unit consistency) cd̂ is

p(cd̂|x) =
1

(2π)
K

2 |Q|
1
2

×exp

[

−
1

2

(

d −

(
rTDOA

c

))T

Q−1

(

d −

(
rTDOA

c

))]

(66)

rTDOA = rmob − rref + b (67)
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where rTDOA is the vector containing the range between the receivers (in units of

meters) and is a function of the position of the receivers and the clock bias x.

Assuming that the TDOA variations are sufficiently small such that the estima-

tor may be considered unbiased, the expression for the CRLB from (62) is modified:

COV(x) ≥

{

E

[(
∂

∂x
ln p(cd̂|x)

)(
∂

∂x
ln p(cd̂|x)

)T ]}
−1

(68)

Similar to the simplification shown in Section 3.4.1 the partial derivatives are shown

to simplify the CRLB to

COV(x) ≥

(

GT Q−1G

)
−1

(69)

where G is the matrix defined in (49).

3.4.3 CRLB for Multiple Receivers and Transmitter Correction Estimators.

The distribution of the observations given the position of the mobile receiver for the

multiple reference receiver and the transmitter correction estimator is the same as

that shown in (66). Therefore, for both estimators the CRLB is of the form shown

in (69). For the multiple reference receiver estimator G is the matrix in (52) and for

the transmitter correction estimator, G is the matrix in (58).

3.5 Summary

This chapter outlined the methodology for synthesizing the concepts presented

in Chapter II into an executable simulation. First, a description of the system model

was provided. Second, the baseline simulation was altered to examine the effects of

errors in the a priori data and additional estimators were derived. Third, the order

of simulation execution was discussed. Fourth, additional derivations were presented

for the CRLB for all of the position estimators.
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IV. Results and Analysis

This chapter presents the simulated results using the simulation environment

and estimation techniques detailed in Chapter III. The chapter begins with the

presentation of the theoretical bounds of the estimators as computed using the CRLB.

The results from the simulations are then presented. The chapter concludes with a

summary and overall findings from the simulations. Portions of the following results

and the related findings were presented in [34].

4.1 Theoretical Simulations

The CRLB for the range estimator was derived in Section 2.4.1.1, and for the

position estimators in Sections 3.4.1 and 3.4.2. This section presents the simulated

results of the these theoretical bounds. The range estimate CRLB is presented, fol-

lowed by the the CRLB for the baseline, two-unknown receiver, and multiple-reference

receiver estimators. To allow greater intuition as to the meaning of the CRLB surface

plots for the position estimates, the values have been plotted in meters by taking the

fourth root of the generalized variance, which produced a standard deviation. How-

ever, since the CRLB is typically discussed in terms of variance, the values presented

are discussed in terms of “root of the variance” to relate it to the output of the CRLB

expression. Also note that the transmitter correction estimator has been omitted for

reasons to be discussed in Section 4.2.5.3.

4.1.1 Range Estimate CRLB. The simplifying assumptions about the noise

characteristics mentioned in Section 2.4.1.1 were used to simplify the CRLB expression

to the form shown in (25) and (26). To compute an exact solution, the remaining

parameters were identified using the quantities from the simulation environment. The

number of transmitters K was known given the transmitter configuration, therefore

K = 8. The observation time was a function of the sampling period and the total

number of samples, “N .” In this case,
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T = Ts × N (70)

In the simulation environment, Ts = 0.1 µsec as discussed in Section 3.1.3.1 and

N = 10, 000 samples as discussed in Section 3.1.2. Therefore, T = 1 msec. The fre-

quency band parameter was the bandwidth of the message signal that was broadcast.

Section 2.1 discussed how the approximate bandwidth of AM signals is 50 Hz to 16

kHz. Therefore, the quantity presented as (0, Ω) becomes (50, 16 × 103) Hz.

As presented in Section 2.4.1.1, both the signal and noise were assumed to be

uniform over the entire frequency range. As a result, the signal and noise terms

appear as a ratio in the CRLB expression. The simulation environment examined a

maximum of 26 SNR values, so the CRLB for each SNR was computed and is shown

in Figure 17.
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Figure 17: Range Estimate CRLB

60



4.1.2 Baseline Estimator CRLB. The CRLB for the baseline estimator was

derived in Seciton 3.4.1. To compute the CRLB surface, the true positions of the

transmitters were input to G. For the x and y coordinates spaced every 75 meters

the fourth root of the determinant of the upper 2 × 2 of the covariance matrix was

computed, similar to the generalized variance discussed in Section 2.4.2. For the

purposes of computing Q, SNR = 20 dB. The results are shown in Figure 18. Note

that the color scale spans 3.0 meters to 15.0 meters. The six transmitter configurations

show that if the receivers were able to be within the the range of the transmitters,

the root of the variance was minimized.

4.1.3 Two-Unknown Receivers Estimator CRLB. The process for comput-

ing the CRLB surface described in Section 4.1.2 was repeated for the two-unknown

receiver estimator using the corresponding G. Since two receiver positions were esti-

mated, the correct position for the reference receiver was input to the matrix, given

that the position of the mobile receiver was the position of interest. The results are

shown in Figure 19. The range of the color scale increased relative to the baseline

CRLB, and regions of high variance are observed around the location of the refer-

ence receiver at (-2500, 1200). This indicates that the estimator would degrade in

accuracy if the two receivers were close to each other, even with an accurate estimate

of the reference receiver position. Plots showing the ratio of difference between this

estimator and the baseline estimator CRLB are provided in Appendix A.1.

4.1.4 Multiple Reference Receivers Estimator CRLB. The process for com-

puting the CRLB surface described in Section 4.1.2 was repeated again for the mul-

tiple receiver estimator using the corresponding G. When two additional reference

receivers were added to the baseline estimator, the overall variance was decreased.

Note that the color scale is the same as in Figure 18 to illustrate the decrease in

variance. The dependency on the transmitter configuration was still present.
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(a) Arbitrary (b) Cincinnati

(c) Phoenix (d) Seattle

(e) Boston (f) Los Angeles

Figure 18: Baseline CRLB Surface, SNR = 20 dB, Rxref at (−2500, 1200)
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(a) Arbitrary (b) Cincinnati

(c) Phoenix (d) Seattle

(e) Boston (f) Los Angeles

Figure 19: Two-Unknown Receiver CRLB Surface, SNR = 20 dB,
Rxref at (−2500, 1200)
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(a) Arbitrary (b) Cincinnati

(c) Phoenix (d) Seattle

(e) Boston (f) Los Angeles

Figure 20: Multiple Reference Receiver CRLB Surface, SNR = 20 dB,
Rxref1 at (−2500, 1200), Rxref2 at (−14000,−13500), Rxref3 at (17500,−5000)
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4.2 System Simulations

Table 3 repeats Table 2 which described all of the simulation types executed for

this research. From the data collected, there are three metrics that are discussed in

this section to compare and contrast all of the estimators. The metrics discussed in

this section are

• Range Estimate RMSE

• Position Estimate Generalized Variance

• Position Estimate RMSE

Each metric is presented in the order listed above, followed by a general dis-

cussion of the strengths and weaknesses of each transmitter/receiver configuration,

and a summary of the findings from the simulations. The results for the transmitter

position correction estimator are discussed separately in Section 4.2.5.3 and are not

included in the following discussion.

A total of 100 observations were executed for each transmitter/receiver config-

uration pair resulting in 400 observations for each SNR value for a given transmitter

configuration. Each metric was averaged across all receiver configurations to compute

Table 3: Simulation Variations

Simulation A Priori True b Error Estimated
# Description Rxref Tx (sec) Rxref Tx Rxmob b Rxref

1 Baseline w/ Bias X X 0 X X

2 Baseline w/o Bias X X 10−7
X X

3 Tx Uncertain X X 0 X X X

4 Rxref Uncertain X X 0 X X X

5 Tx/Rxref Uncertain X X 0 X X X X

6 Two-Unk w/ Bias X 0 N/A X X X

7 Two-Unk w/o Bias X 10−7 N/A X X X

8 Multi-Ref w/ Bias X X 0 X X

9 Multi-Ref w/o Bias X X Varies∗ X X

10 Tx Correction X X 0 ∽ X X

∗For three reference receivers the true biases are 10−7, 5 × 10−6, and 2 × 10−5.
The “∽” symbol indicates that error is added to two transmitters only.

65



a single statistic for each SNR value as described in Section 3.3. The only exceptions

to this statement were Simulations #6 and #7, which only executed simulations at

-10 dB and -5 dB when SNR < 0.

4.2.1 Range Estimate RMSE. The range estimate RMSE showed distinction

between the simulations, namely because the RMSE combined bias and variance

to compute the final value. Therefore, the dominance of the bias was observed in

this statistic at higher SNRs where the variance approached zero in the simulation

environment (see Appendix A.2). The basic trend in the plots is similar to that of the

CRLB in Figure 17 until the bias begins to dominate as the source of error. The plots

of the average RMSE for all environment geometries are shown in Figures 21 - 26.

For all geometries, for SNR ≤ 10 dB, the RMSE showed no significant distinc-

tion between the ideal baseline scenario in Simulation #1, the addition of clock bias

in Simulation #2 or any of the errors added to the a priori data in the remaining sim-

ulations. This indicates that the channel noise was the dominant source of errors in

the range estimates. This was further confirmed by the increased RMSE as SNR de-

creased. As the channel conditions improved, and hence approached ideal conditions

(SNR ≥ 20 dB), the aforementioned distinction of the error sources became apparent.

The ideal baseline scenario of Simulation #1 approached 10 meters for all geometries.

Simulation #3 showed a trend similar to Simulation #1 and in the Cincinnati geome-

try, performed at a lower average RMSE than the ideal baseline scenario. Uncertainty

in the receiver demonstrated a more direct impact on the range estimate RMSE. This

may result from the fact that the potential magnitude of the error added to the ref-

erence receiver was 25 meters compared to 15 meters for the transmitter errors, thus,

resulting in a higher overall error. The clock bias also demonstrated a direct impact

on the final RMSE. Since the pseudorange measurement was computed based on the

a priori positions, as well as the measured TDOA, any error in the TDOA measure-

ment would necessarily degrade the final position estimate accuracy. This trend was

observed across all of the environment geometries.
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Figure 21: Range Estimate RMSE: Arbitrary
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Figure 22: Range Estimate RMSE: Cincinnati
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Figure 23: Range Estimate RMSE: Phoenix
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Figure 24: Range Estimate RMSE: Seattle
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Figure 25: Range Estimate RMSE: Boston
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Figure 26: Range Estimate RMSE: Los Angeles
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4.2.2 Position Estimate Generalized Variance. The position estimate gen-

eralized variance was expected to show a dependancy on the environment geometry

based on the expressions for the position estimate CRLBs, and the simulated CRLB

surfaces presented in Section 4.1. The average generalized variances for the final posi-

tion estimates are shown in Figures 27 - 32. These data serve as further validation of

the simulations compared to the theoretical expressions as they demonstrated depen-

dancy on the environment geometry. Additionally, the trends for the estimators are

all similar in that they improve or degrade based on SNR. Therefore, any deviations

may be attributed to some characteristic of the environment geometry that would

improve or degrade the final position estimate.

For all environment geometries, except Seattle, for 0 dB ≤ SNR ≤ 30 dB, the

multiple-reference receiver estimator with no clock bias achieved the lowest RMSE,

followed by the baseline estimator cases, and the two-unknown receiver estimator.

The clock bias between the multiple reference receivers has the significantly degraded

the generalized variance in the Arbitrary transmitter configuration and to a lesser

extent in the Los Angeles configuration. In general, at 50 dB or 60 dB, the variance

went to zero, similar to the range estimate generalized variance (see Appendix A.2

for further proof). Since this was a result of the ideal noiseless conditions of the

simulation environment, those values are not explicitly plotted and the emphasis is

placed on the SNR values below 50 dB.

The Seattle transmitter configuration proved to have the most variance in the

position estimate errors. Compared to the other estimators, the mobile receiver was

more often located in the highest variance regions on the CRLB surfaces seen in Fig-

ure 18(d), Figure 19(d), and Figure 20(d). In this simulation, the multiple reference

receiver values remained above the upper bound of the vertical axis until 50 dB at

which point the value was on the order of 10−4 meters. As such, the curve is not

visible in Figure 30. Except in the case of the two-unknown receiver estimator, no

estimator produced results under 100 meters until SNR ≥ 20 dB. The two-unknown

receiver scenarios, however, began with a closer initial guess for the position of both
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receivers. This case illustrates the tradeoff between the maximum allowable error

in the initial guess, and the effect the environment geometry had on the estimator.

Therefore, even general knowledge about the CRLB or theoretical performance of the

transmitter configuration can greatly improve the effectiveness of the estimator, and

also determine initial requirements.

The multiple reference receiver estimator demonstrated a smoother trend in

the error variance for SNR ≤ 0 dB, as well as provided a consistent improvement

compared to the baseline estimator (except in the Seattle environment geometry as

previously discussed). The two-unknown receiver estimator showed that the error

variance increased above 103 meters for SNR ≤ 0 dB. Given the requirement to have

a closer initial guess than the baseline or multiple reference receiver estimator to

ensure convergence on a solution, another limitation could have been added stating

that the estimator should only operate when SNR > 0 dB.
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Figure 27: Position Estimate Generalized Variance: Arbitrary
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Figure 28: Position Estimate Generalized Variance: Cincinnati
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Figure 29: Position Estimate Generalized Variance: Phoenix
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Figure 30: Position Estimate Generalized Variance: Seattle

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

10
5

SNR (dB)

G
en

er
al

iz
ed

 V
ar

ia
nc

e 
(m

et
er

s)

 

 

Tx Uncertain
Rx Uncertain
Both Uncertain

s

s

Figure 31: Position Estimate Generalized Variance: Boston
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Figure 32: Position Estimate Generalized Variance: Los Angeles

4.2.3 Position Estimate RMSE. Just as the range estimate RMSE values

showed the distinction between the conditions simulated with the baseline estimator,

the position estimate RMSE showed additional distinction between all of the estimator

performances. The plots of the average RMSE for all environment geometries are

shown in Figures 33 - 38.

Generally, the clock bias did not demonstrate a significant difference compared

to the respective estimator without a clock bias except in the case of the multiple

reference receiver estimator. This was due to the fact that there were larger clock

bias values simulated. The RMSE for this simulation in Los Angeles compared to the

other simulations illustrates the dependency between the environment geometry and

the impact the clock bias has on the estimator accuracy. The uncertainty added to

the reference receiver position proved to be the dominant impact to the accuracy of

the baseline estimator, just as it did in the case of the range estimation.
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The results for the Seattle geometry using the multiple reference receiver case,

again remained above the upper bound of the vertical axis, as discussed in Sec-

tion 4.2.2. This further supports the conclusion that the transmitter geometry paired

with the four different receiver configurations was not conducive to ensuring consis-

tent convergence on a position solution. For the other five geometries the multiple

reference receiver estimator with no clock bias and the multiple conditions of the

baseline estimator were varied, but relatively similar for SNR ≤ 10 dB. Except in the

environment geometries of Cincinnati and Phoenix, above 10 dB the multiple refer-

ence receiver estimator with no clock bias performed better in terms of RMSE than

the baseline estimator.

The Cincinnati and Phoenix transmitter configurations placed the transmitters

in a vertical line pattern as opposed to spread out across the simulation environment.

The reference receivers were placed in a configuration that resembled a triangle which,

from the view of the estimators, began to resemble a horizontal line of receivers. The

multiple reference receiver estimator without clock bias performed better than the

baseline in the Boston environment geometries as it does in the Arbitrary and Los

Angeles environment geometries, which both had a relatively wide spread of transmit-

ter locations. This observation indicates the importance of not only the transmitter

configuration, but also emphasizes the importance of the location of the reference

receiver(s) relative to the transmitters. This is an important consideration when

deciding on the trade-offs between the additional computation time and bandwidth

introduced by adding reference receivers or relying on a single reference receiver as

in the baseline estimator. To add to this observation, the clock bias degraded the

solution in the Boston environment geometry, which would negate any improvement

offered by using additional reference receivers. The clock bias simulations empha-

size that all aspects of the estimator and receiver system must be considered when

selecting an estimator.

The two-uknown receiver produced the same general trend as the other estima-

tors once a certain SNR threshold was reached. The dependancy on the environment
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geometry was still apparent for this estimator. In the Arbitrary, Cincinnati, and

Phoenix environment geometries this SNR threshold was between 0 dB and 10 dB. In

the Boston environment geometry, the threshold was at approximately 30 dB and at

SNRs higher than that, the two-unknown receiver RMSE exceeded the performance

of the baseline estimator. A similar situation occurred in the Phoenix environment

geometries at 50 dB and 60 dB. This was due to the fact that this estimator began

with an initial guess closer to the actual location of both receivers to ensure conver-

gence. In these cases, the initial guess was close enough that it exceeded the baseline

estimator results.
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Figure 33: Position Estimate RMSE: Arbitrary

4.2.4 Transmitter/Receiver Configuration Findings. The transmitter con-

figurations proved to be an important factor in the accuracy of the estimators. The

Seattle transmitter configuration demonstrated the most sensitivity for all estima-

tors. If the receivers were moved closer to the transmitters, the results would likely

be more similar to those of the Boston transmitter configuration given that the two
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Figure 34: Position Estimate RMSE: Cincinnati
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Figure 35: Position Estimate RMSE: Phoenix
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Figure 36: Position Estimate RMSE: Seattle

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

10
5

SNR (dB)

R
M

S
E

 (
m

et
er

s)

 

 

Tx Uncertain
Rx Uncertain
Both Uncertain

s

Figure 37: Position Estimate RMSE: Boston
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Figure 38: Position Estimate RMSE: Los Angeles

configurations are similar. The spread of transmitters, particularly in the Arbitrary

and Los Angeles transmitter configurations, proved to offer the most consistent trends

for all estimators. In the Phoenix and Cincinnati configurations, the vertical trans-

mitter pattern exposed a weakness of the multiple reference receiver placement. The

Boston transmitter configuration, which had a similar cluster to the Phoenix config-

uration except the transmitters were more horizontally spread, showed that placing

the receivers closer to the transmitters mitigated the effect.

4.2.5 Estimator Findings. In all of the statistics presented here, the trend

between all of the estimators plotted was consistent with the baseline case (with any

exceptions noted and explained in the preceding sections). Furthermore, the trend

of the range estimate RMSE was similar to the range estimate CRLB at SNR levels

where the variance dominated as the source of error. This general trend carried over

to the position estimate RMSE and added the demonstrated dependancy on the trans-

mitter configuration as the theoretical expressions and CRLB surface plots indicated.
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Therefore, the simulated results of the multiple reference receiver and two-uknown re-

ceiver estimators are considered valid. Given this observation, it indicates that with

additional mitigation techniques, the two-unknown receiver estimator may produce

position estimates results that approach the baseline estimator, and the multiple ref-

erence receiver estimator may offer further improvement compared to the baseline

estimator.

4.2.5.1 Two-Unknown Receiver Estimator. The two-unknown receiver

estimator required the initial guess to be closer to the true position than the baseline

or multiple reference receiver estimators. This limitation of the estimator, along

with a higher sensitivity to SNR ≤ 0 dB than the other estimators, would certainly

define the scenarios in which it could be implemented. However, the strength of this

estimator is that while the initial guess must be close, the estimator does not require

precise a priori knowledge of the position of the reference receiver, hence, it would

best be utilized in a tracking situation.

4.2.5.2 Multiple Reference Receiver Estimator. The multiple refer-

ence receiver estimator showed that given most of the simulated conditions, it would

perform better than the baseline estimator. A specific limitation was noted in the re-

ceiver configuration relative to the transmitters, discussed in Section 4.2.4. However,

given the consistency of the results, aside from the Cincinnati, Phoenix and Seattle

configurations (the latter of those proved sensitive for all estimators), the multiple

reference receiver estimator simulated here demonstrated an improved performance

compared to the baseline estimator. With additional reference receivers placed such

that they would not be vulnerable to the situations encountered in the Cincinnati or

Phoenix transmitter configurations, further improvement relative to the baseline case

could potentially be achieved. However, when clock bias is present, the estimator

output may show degraded accuracy compared to the baseline estimator depending

on the transmitter configuration.
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4.2.5.3 Transmitter Correction Estimator. The transmitter correction

estimator was unique from the other estimators in that it proved to be the most sensi-

tive to the simulation conditions. Originally the simulation environment included the

transmitter uncertainty scenario described in Section 3.2.1.1 except with three refer-

ence receivers instead of only one, and the error was only applied to two transmitters.

However, even at high SNR levels the accuracy of the final estimate for the mobile

receiver was degraded. The initial guess was moved from (0,0) to (12400,12400) which

placed it 100 meters off from the true position of the mobile receiver in both directions.

Since the magnitude of the errors inserted were only up to 15 meters, the ability of

the estimator to correctly detect and correct it was limited given the fidelity of the

simulation environment and the nature of the AM signals (referring to the relatively

low bandwidth compared to other SoOP). Therefore, the error was increased such

that the error magnitude could be as high as 50 meters. As an additional step in the

simulations, before implementing the transmitter correction estimator, the columns

inserted to estimate the transmitter positions were removed such that the estimator

computed an estimate for the mobile receiver and the clock bias only. The initial data

was then reset and the full transmitter correction estimator was used to compute so-

lution. This allowed for the comparison (under the exact same error conditions) of

attempting to correct for the error, and simply allowing the errors to exists in the

data and compute a solution.

Table 4: Transmitter Correction Simulation RMSE (meters)

SNR (dB) Arbitrary Cincinnati Phoenix Seattle Boston LA
0 834.08 479.78 481.81 2306.46 471.36 4778.74
10 280.03 149.56 172.27 248.78 173.68 187.98
20 62.23 58.69 56.43 76.14 50.17 57.81

The simulations were executed for 25 observations for only the environment ge-

ometry where the mobile receiver was placed at (12500,12500) at three SNR levels.

The results of the average RMSE of the estimate for the mobile receiver per transmit-

ter configuration are shown for the transmitter correction estimator in Table 4 and for
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Table 5: Transmitter Error/No Correction Simulation RMSE (meters)

SNR (dB) Arbitrary Cincinnati Phoenix Seattle Boston LA
0 328.05 409.82 403.71 321.23 430.71 277.80
10 110.73 142.88 148.01 108.84 159.59 112.98
20 43.94 63.55 50.80 49.28 55.62 35.68

the multiple reference receiver estimator (i.e., without estimating the transmitter po-

sition error) in Table 5. Ultimately (with only two exceptions at 20 dB) the addition

of the transmitter correction technique degraded the overall RMSE for the position

estimate of the mobile receiver. Tables 6 and 7 show the RMSE of the estimates for

the transmitter positions.

Table 6: Transmitter Estimate RMSE for x-Coordinates (meters)

SNR (dB) Arbitrary Cincinnati Phoenix Seattle Boston LA
0 84.83 47.68 89.60 76.39 59.80 87.74
10 70.36 51.87 96.55 64.62 68.87 116.52
20 22.37 47.03 48.08 61.41 54.99 93.16

Table 7: Transmitter Estimate RMSE for y-Coordinates (meters)

SNR (dB) Arbitrary Cincinnati Phoenix Seattle Boston LA
0 46.19 63.81 44.88 84.39 72.99 87.89
10 67.94 59.86 91.69 30.92 89.26 46.09
20 55.66 34.92 62.77 48.35 39.31 80.94

These data show that the error of the transmitter position estimates are ap-

proximately on the same order of magnitude for both the x and y coordinates for all

transmitter configurations. This indicates the possibility that a limit on the accuracy

and consistency of the estimator to compute corrections of the transmitter positions

was imposed by the fidelity of the simulation environment and/or the AM signals.

As previously discussed, the initial attempt to mitigate this limit was to increase the

error in the transmitter positions such that the ability to correct the error in the

transmitter could be more adequately demonstrated. However, the overall accuracy

would not likely have exceeded the values presented here.
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4.3 Summary

This chapter presented simulated results for the baseline estimator from pre-

vious works and the three estimators derived from this research. The simulations

presented both the theoretical bounds and the overall performance of the estimators

in the simulation environment. The simulations were validated by comparing the

results to the theoretical performance. The behavior and trends of the estimators,

various conditions, and the transmitter and receiver locations were discussed, and the

resulting observations were presented.
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V. Conclusions and Recommendations

This chapter summarizes the findings from the simulation results of algorithms

developed for navigation from TDOA measurements using AM SoOP. Recom-

mendations for future research using TDOA measurements from AM and any SoOP

are also provided.

5.1 Conclusion

The two goals of this research were to prove the concept that a revised TDOA

algorithm using SoOP is sufficient for navigation with limited or no a priori position

data for the reference receiver or transmitters, and to examine the effect of erroneous

a priori position data in the baseline estimator.

To address the primary goal of this research, Chapter II and Chapter III derived

the baseline estimator and three additional estimators: the two-unknown receiver

estimator, the multiple receiver estimator, and the transmitter correction estimator.

The simulations were validated against theoretical bounds, and similar trends were

observed as presented in Chapter IV. Thus, the primary goal of the research was

accomplished in demonstrating that accuracy consistent with the baseline estimator

is possible under certain conditions when the estimator is altered to allow for the

removal of a priori data. The two-unknown receiver estimator specifically addressed

the primary goal. The multiple reference receiver contributed to the primary goal

in the sense that it could improve the accuracy of the baseline estimator in certain

conditions. The limited demonstration of the transmitter correction estimator did

not significantly contribute to this goal, however, the derivation allows for this to be

explored in future work.

The secondary goal was detailed in Chapter IV in the simulation of the baseline

estimator with uncertainty added to the reference receiver position and the trans-

mitter positions. The former proved to be the more significant source of degraded

accuracy given the magnitude of the errors simulated in this research. It was noted

that the magnitude was different for the two errors. The transmitter position error
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was bounded at 15 meters, whereas the reference receiver could contain errors of ap-

proximately as much as 25 meters. Also, the errors were generated according to two

different distributions as discussed in Chapter III. This research demonstrated that

given the error magnitudes considered, the error added to the reference receiver was

more significant than errors in the a priori transmitter positions. This provides fur-

ther justification for the derivation and implementation of the two-unknown receiver

estimator, and demonstrates how the derivation and simulation of this estimator also

addressed the secondary goal of this research.

The two-unknown receiver estimator described in Section 3.2.2 and the CRLB

expression discussed throughout Section 3.4.2 contributed to [27]. The results for

the baseline, two-unknown receiver, and multiple reference receiver estimators for the

Cincinnati, Phoenix, and Los Angeles transmitter configurations were presented to

the Institute of Navigation [34].

5.2 Future Work

This research focused exclusively on the derivation and proof-of-concept simula-

tions for variations on the existing navigation via TDOA algorithm. There were many

assumptions made to limit the scope of this research, time constraints for simulations,

and other areas that allow for many opportunities to expand on this research. Some

of those areas are recommended here.

• Transmitter Correction Estimator

Time constraints prevented further exploration of this estimator. The deriva-

tion is complete, however, sufficient initial conditions were not found in order

to simulate it to the same extent as the two other estimators derived during the

course of this research. As such, this estimator could potentially offer further

robustness to the navigation environment where a priori SoOP transmitter po-

sitions are known to contain errors. Furthermore, the same concept allows for

other derivations of the estimator. For example, a Gaussian prior distribution
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of the transmitter position could be added (with σ corresponding to the known

error distribution) to aid in the convergence on a transmitter position estimate.

• Multipath

To limit the scope and constrain errors in the simulation to those allowed by

the algorithm, multipath was assumed to not be present. However, in order

to explore the reality of implementation of this system, multipath should be

incorporated in the simulation along with a mitigation technique.

• TDOA Environment

Many of the conditions used to simulate the received SoOPs can be altered to

explore the effect on the system output. The conditions that could be changed

include adding or removing transmitters, increasing or decreasing the distances

between transmitters, changing the signal power and station availability to sim-

ulate day/night conditions, or using different message signals from the stations.

Furthermore, in addressing the secondary goal of this research, the error added

to the position of the reference receiver proved to be the dominant source of

error compared to the error added to the transmitter positions. It would be

beneficial to further explore the effect of different magnitudes of errors added

to both cases.

• Different SoOP

For proof-of-concept demonstration, AM was the only SoOP used in the simu-

lations. Since real-world conditions may allow for higher bandwidth signals, or

even a mixture of SoOP depending on the requirement, it would be useful to

explore use of SoOP other than AM.

• Cross-Correlation Technique

The simplest and most basic cross-correlation technique was intentionally used

in this research. If AM signals are to be used in a hardware implementation, it

may be desirable to test more robust techniques which could possibly enhance
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TDOA estimation and mitigate potential deficiencies of the position estimation

algorithm.

• Mobile Receiver In Motion

These simulations tested discrete instances of the location of the mobile receiver.

For implementation in to any system, the effectiveness of the algorithm while

the mobile receiver is in motion must be explored. This may also necessitate

different methods of computation in order to provide a real-time continuous

navigation solution, such as a Kalman filter, which may be an area of yet further

research based on the algorithms presented here.

• Altitude/z-coordinate Estimation

To reduce computation time, the estimators only output two-dimensional es-

timates for this research. If a system were intended to replace or supplement

GPS, three-dimensional outputs would be desired, or perhaps even required.

Therefore, examining the effects of transmitter height and position on the third

dimension would add to the overall determination of the effectiveness of the

algorithms.

• Hardware

As many of these recommendations have indicated, testing the algorithms in the

simulation environments allows for a certain level of confidence in the underlying

theory to produce a useable navigation solution. However, for these algorithms’

true effectiveness to be examined, they must be implemented into a physical

system that can be tested under real-world conditions.

This research used the simulation environment to demonstrate a successful

proof-of-concept for the two-unknown receiver estimator and the multiple reference

receiver estimator algorithms. It further provided an examination of the effect of the

errors added to the baseline algorithm. This research provides exciting new baseline

data and results to motivate further research and experimentation in the study of

using SoOP for navigation.
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Appendix A. Additional Plots

This appendix provides additional plots from the simulations that are not included

in Chapter 4.

A.1 CRLB Comparisons

Figure A.1 shows the magnitude of the baseline divided by the magnitude of

the two-unknown receiver CRLB surface for each point simulated. The plots indicate

the magnitude of additional variance in the two-receiver estimator. Compared to the

CRLB surface plots shown in Figure 18 and Figure 19, the most variance in the two-

unknown receiver estimator occured in this region around the reference receiver at

(-2500, 1200).

A.2 Bias vs. Variance Comparisons

Figures A.2 - A.10 present the bias and variance as a percentage of the total

error. Some plots have gaps from when Matlabr computed NaN (not a number) for

some observations.
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(a) Arbitrary (b) Cincinnati

(c) Phoenix (d) Seattle

(e) Boston (f) Los Angeles

Figure A.1: Baseline divided by 2-Unknown Receivers CRLB, SNR = 20 dB

89



−10 0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

SNR (dB)

%
 o

f T
ot

al
 R

M
S

E

x−coordinate

 

 

−10 0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

SNR (dB)

%
 o

f T
ot

al
 R

M
S

E

y−coordinate

−10 0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

SNR (dB)

%
 o

f T
ot

al
 R

M
S

E

Clock Bias

Arbitrary − Bias

Arbitrary − Var

Cincinnati − Bias

Cincinnati − Var

Phoenix − Bias

Phoenix − Var

Seattle − Bias

Seattle − Var

Boston − Bias

Boston − Var

LA − Bias

LA − Var

Figure A.2: Bias vs. Variance as % of Total Error for Simulation #1
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Figure A.3: Bias vs. Variance as % of Total Error for Simulation #2
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Figure A.4: Bias vs. Variance as % of Total Error for Simulation #3
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Figure A.5: Bias vs. Variance as % of Total Error for Simulation #4
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Figure A.6: Bias vs. Variance as % of Total Error for Simulation #5
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Figure A.7: Bias vs. Variance as % of Total Error for Simulation #6
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Figure A.8: Bias vs. Variance as % of Total Error for Simulation #7
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Figure A.9: Bias vs. Variance as % of Total Error for Simulation #8
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Figure A.10: Bias vs. Variance as % of Total Error for Simulation #9
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The Global Positioning System (GPS) provides world-wide availability to high-accuracy navigation and positioning information. However,
the threats to GPS are increasing, and many limitations of GPS are being encountered. Simultaneously, systems previously considered as
viable backups or supplements to GPS are being shut down. This creates the need for system alternatives. Navigation using signals of
opportunity (SoOP) exploits any signal that is available in a given area, regardless of whether or not the original intent of the signal was
for navigation. Common techniques to compute a position estimate using SoOP include received signal strength, angle of arrival, time of
arrival, and time difference of arrival (TDOA). To estimate the position of a SoOP receiver, existing TDOA algorithms require one reference
receiver and multiple transmitters, all with precisely known positions. This thesis considers modifications to an existing algorithm to
produce a comparable position estimate without requiring precise a priori knowledge of the transmitters or reference receiver(s). Using
Amplitude Modulation (AM) SoOP, the effect of erroneous a priori data on the existing algorithm are investigated. A proof-of-concept for
three new estimation algorithms is presented in this research. Two of the estimators successfully demonstrate comparable performance to
the existing algorithm. This is demonstrated in six different transmitter environments using four different receiver configurations.
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